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Abstract  Fluid mechanics is a complex field of 

study with many modern design applications.  

Mechanical and aerospace engineers frequently 

have the need to analyze fluid flow patterns for 

practical design purposes ranging from a complete 

design to a validation of results.  Physical concepts, 

such as conservation of mass, conservation of 

momentum, and conservation of energy are required 

to fully describe any arbitrary flow pattern’s 

characteristics.  These concepts are required to 

compute pressure distribution, typically used in the 

design of airfoils and other arbitrary shapes, which 

are of main interest in the aerospace and naval 

industries.  A tool was created that employs 

computational fluid dynamics techniques to provide 

solution for flow patterns over NACA four digit 

airfoils.  The tool uses a coordinate transformation 

method to analyze flow properties at desired points 

without the need of interpolation, which can affect 

accuracy of results.  Additionally, the tool considers 

flows whose velocity potential conforms to Laplace’s 

linear partial differential equation on a plane. 

Key Terms  Computational Fluid Dynamics, 

Coordinate Transformation, Inviscid-

Incompressible Flow, Laplace PDE. 

INTRODUCTION 

The aerospace and naval industries require 

professionals who master fluid mechanics so that 

these may find solutions to their design problems in 

fluid dynamics.  These professionals employ tools 

and solution methods that aid in the analysis and 

design process.  Designing for aerospace and naval 

applications constantly call for the need to analyze 

aerodynamic properties of airfoils.  This type of 

analysis is of a complex nature and many times 

provides for unreliable results.  To serve this 

purpose, a software tool was created using Matlab 

that analyzes flow patterns over basic airfoils. 

The main idea behind this program is that if the 

flow speed distribution is obtained some distance 

from the airfoil and afterwards, the pressure 

distribution around the airfoil’s surface may also be 

obtained.  An incompressible, inviscid flow is used 

to analyze the fluid flow patterns.  A coordinate 

transformation technique is also employed to ensure 

that properties obtained at the airfoil’s body is 

obtained, given that this is the main area of interest 

for aerodynamic applications. 

GOVERNING THEORY 

The model used for the flow pattern analysis in 

question is that of an incompressible, inviscid flow.  

This flow is unaffected by viscous effects and its 

density remains constant throughout the field. 

To be more precise, an incompressible flow is 

any flow in which the particles’ density remains 

constant. The density is the mass of the particle per 

unit volume, where ρ (rho) is the density, m is the 

mass, and V is the volume. If the mass of a particle 

was fixed and it would be moved through an 

incompressible flow, then this particle must also 

have a constant volume (that is ∫ δV is equal to V, 

where V is constant) is to comply with the constant 

density condition. Mathematically, this is, 

   dVm                                                     (1) 

Now, as defined by Anderson Jr. [1], if the 

volume of the flow is to remain constant and the 

volume under question is sufficiently small so that it 

only contains one particle (that is, Vparticle = δV), 

then it follows that the time rate of change of volume 

of a fluid element per unit volume should be as 

follows, 
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It then follows that the divergence of velocity 

must be equal to the time rate of change of volume 

of a fluid element per unit volume. We define u and 

v as the velocity vector components in the x axis and 

y axis, respectively. Now remember that the 

divergence of velocity is the derivative of all the 

velocity components with respect to their own 

direction. In an x-y plane this is,  
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The second condition requires that the flow 

should be irrotational. This condition is given by 

computing the curl of the velocity vector field. For 

this case, the flow’s curl should be equal to zero. The 

curl for the flow’s velocity vector field is given by 

the alternate form of its derivative. This is,  
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If we were to define a function in so that its 

gradient defines the velocity of a flow field, we may 

expand our definition for any particle moving 

through an incompressible and irrotational flow. As 

Anderson1 named it, the velocity potential is 

denoted with the Greek letter ϕ (phi) and shall serve 

this purpose. If we were to combine this with the curl 

and the divergence of a vector field, we obtain the 

following,  
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and,  
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in cartesian coordinates  
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in cylindrical coordinates.  

Note that the first equation only shows 

compliance with the irrotational condition and the 

second equation, which shows the incompressibility 

condition, is also Laplace’s differential equation [2]. 

Anderson also defined that the streamlines (denoted 

as ψ) for any flow pattern under these conditions 

must also satisfy Laplace’s equation. That is,  
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Boundary Conditions in the Physical Plane 

After solving Laplace’s equation, the required 

boundary conditions are the following.  The first 

condition is applied on the surface of the body being 

analyzed.  This requires that the Kutta condition 

must be applied at the trailing edge [3].  This requires 

that the stream function values on the trailing edge 

of a finite airfoil are such that the trailing edge yields 

a stagnation point, or a point of zero velocity.  The 

Kutta condition also requires that, at a given speed 

and angle of attack, the value of the circulation 

around the airfoil is such that the streamline leaves 

the airfoil smoothly, or ensure that the airfoil is a 

streamline of the flow.  Given that the airfoil is a 

streamline of the flow, it also follows that the 

streamline value on the surface of the airfoil must be 

a constant value.  Refer to Figure 1 for application of 

the Kutta condition on a finite airfoil.  The second 

boundary condition applies to the values at the 

“borders” of the flow field.  These conditions, 

known as the infinity boundary conditions, require 

that the stream values be such that the derivatives at 

a discrete point should yield the freestream speed at 

the prescribed angle of attack.  These conditions will 

be reviewed later from the coordinate transformation 

point of view.  The equations that represent these 

conditions in the physical coordinate system are the 

following, 
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Figure 1 

Application of the Kutta Condition 

Coordinate Transformation into Computational 

Plane 

To capture the physics when computing the 

fluid flow patterns, it is necessary to perform a 

coordinate transformation from the physical plane to 

a convenient computational plane.  This requires that 

the Cartesian plane be transformed into a plane 

where the x axis and y axis are represented by two 

new variables. 

Although the definition of the new variables is 

arbitrary by convenience, observation of the field 

calls for an imposed relation between the Cartesian 

coordinates and the computational coordinates.  The 

imposed relationship arises from the desire to 

represent the airfoil “contour” with some constant 

value and the outer boundary “contour” with another 

representative value.  The imposed relationship is 

called a boundary-fitted coordinate system, 

subjected to an elliptic relationship between the 

variables.  Refer to Figure 2 for more details on 

coordinate transformation relationship. 

Observe that the blue contours that surround the 

airfoil will represent the variable eta, η, and the blue 

contours that expand in a transverse direction to that 

of the airfoil will be represented by the variable zeta, 

ζ.   

 
Figure 2 

Contour Map of Coordinate Transformation Variables in 

Physical Plane 

An arbitrary grid is created in such a way that it 

encloses the body being analyzed.  Figure 3 shows 

an example on the physical plane with the intention 

of clarifying concept.  The airfoil contour follows 

line racegpr, which represents the inner boundary 

for our grid generation method, represented by the 

constant value line, η1.  Line sbdfhqs represents the 

outer boundary, represented by the constant value 

line, η2.  Lines pq and rs are coincident for when 

applying the model, but separated in Figure 3 for 

illustrative purposes.  Figure 4 demonstrates the 

computational plane and the respective locations of 

points a, b, c, d, e, f, g, h, p, q, r, and s.  The lower 

horizontal line in the grid represents the body 

contour, whereas the upper horizontal line represents 

the outer boundary. 

The simplest possible elliptic relationship 

between the physical coordinate variables and the 

computational variables is Laplace’s linear partial 

differential equation [4].  Since we are interested in 

computing a grid with constant lower and upper 

boundaries, the appropriate applied conditions are 

Dirichlet boundary conditions.  Notice that this only 

describes the upper and lower limits.  Since this 

system envelops an entire physical grid, recall lines 

pq and rs in Figure 3, the values for Γ3 and Γ4 must 

be such that the physical coordinates along both 



contours be equal to each other, thus closing the 

physical plane and representing re-entrant boundary 

conditions [5].  The elliptic system relationship is 

analogous to ζ (x, y) and η (x, y) being harmonic in 

the physical plane.  The following coupled system of 

equations is posed as the solution to the coordinate 

transformation, 
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subjected to the Dirichlet boundary conditions, 
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Figure 3 

Physical Plane Concept for Arbitrary Body Shape Limits 

 
Figure 4 

Physical Plane Concept for Arbitrary Body Shape Limits 

Notice that the solution to this system yields the 

distribution of the computational variables in the 

physical plane.  The dependent variables here are the 

physical coordinates and this will not yield the 

desired computational plane.  Therefore, the desired 

computational plane must be imposed, such that the 

independent variables are the computational field 

variables.  This condition then requires that the 

system of equations to be solved is not the Laplace 

partial differential equations, but their inverse, 

instead.  The solution to this system will yield the 

distribution of physical coordinates required to hold 

the elliptic relationship.  The development of this 

equation will not be presented, although the process 

may be found in many differential equations 

textbooks.  The system of equations that must be 

solved are the following, 
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subjected to the transformed boundary conditions, 
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The functions on the boundary conditions 

correspond to the known shape of the contours in the 

physical coordinate plane.  Since the horizontal 

limits represent re-entrant boundaries, boundary 

values are not necessary to carry out the solution. 

The new system of equations is quasi-linear in 

nature [6] and is more complex to solve than 

Laplace’s partial differential equation, but it 

complies with all the requirements for a proper 

coordinate transformation, along with fitting the 

physical contours required to capture the physical 

phenomena.  Notice that the boundary conditions 

can easily incorporate multiple bodies, if desired.   

Final Form of the Quasilinear Partial 

Differential Equation 

No exact solution exists for the new system of 

equations, so approximation methods must be 

employed.  To approximate our solution, second 

order finite difference techniques are employed, 

applied to all the corresponding derivatives.  The f (x 

or y) coordinate derivative approximations are the 

following, 
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The approximations for f are analogous to x and 

y.  Once these derivatives are developed, the 

difference approximations of the derivatives are 

constructed and yield the following (Imax-1) × (Jmax-

2) amount of equations, 
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where at i=1 the corresponding discrete points 

pertain to the re-entrant boundary conditions.   

Solution Scheme of the System Quasilinear 

Partial Differential Equations 

The solution to this system requires a technique 

that can solve non-linear partial differential 

equations.  To serve this purpose, the Successive 

over Relaxation, Steffensen-Newton method is used. 

This method is similar to the Gauss – Seidel 

iterative technique with an adapted version of the 

Newton – Raphson method.  Research on this 

method states that this method offers faster 

convergence rates than other methods and will serve 

our computational purposes, given that both methods 

can be used for non-linear systems. 

Since the equations are an approximation of a 

quasi-linear set of partial differential equations, 

initial estimate values are necessary to ensure proper 

solution values.  The approximation offered for the 

initial conditions is a weighted average of boundary 



points and can be found in [5].  Observe Figure 5 for 

a plot of the initial guess pattern. 

 
Figure 5 

Initial Approximation Plot 

The Successive Over Relaxation – Steffensen 

Newton method is applied as follows.  The system 

of equations must be stated in the following format, 
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The idea is that the entire system of equations 

be equal or approximate to zero until a certain 

convergence parameter is achieved.  Convergence is 

reached when the maximum relative error between 

the variables is below the specified convergence 

factor.  The updated variables are used immediately 

upon calculation, thus speeding the iterative process.  

Refer to [7] for instructions on how to apply the 

method. 

Convergence of these equations yield the 

desired x and y coordinate distribution.  Observe 

Figure 6 for the final contour plot for the same case 

as that in Figure 5. 

CASE STUDY 

An inviscid, incompressible flow’s streamlines 

must conform to Laplace’s partial differential 

equation.  Coordinate transformation requires that 

any equation being solved also be transformed to the 

computational plane.  The equation for the stream 

function on the transformed plane is as follows, 
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subjected to the transformed version of Neumann 

boundary condition, 
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and imposition of the Kutta condition at the trailing 

edge, 
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Contour plots of the solution of this system at a 

given velocity and angle of attack gives the 

streamline pattern for the flow over a selected airfoil. 

 
Figure 6 

Final Contour Plot 

Figures 7, 8, and 9 demonstrate the streamline 

patterns obtained for a NACA 0012 airfoil with a 

chord size of 10, freestream velocity of 100, 

convergence factor of 1E-12, and at angles of attack 

of 0, 15 degrees, and 45 degrees, respectively. 



 
Figure 7 

Angle of Attack of 0 Degrees 

 
Figure 8 

Angle of Attack of 15 Degrees 

Notice that the stagnation points can be 

observed in all three plots.  Close inspection of the 

contours shows that none of them cross each other, 

thus specifying that the flow patterns are correct.  

From these streamline patterns, other flow 

conditions may be obtained following the 

relationships of the transformed coordinate plane, 

thus ensuring that the desired physics are captured. 

 

 

Figure 8 

Angle of Attack of 45 Degrees 
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