
Little Fe Configuration and GalaxSee Detection Code for Simulation the Planets with

Pixels and Color Skin

Gerardo L. Figueroa Rosado

Master of Engineering in Electrical Engineering

Luis Vicente López, Ph.D.

Electrical Engineering Department

Polytechnic University of Puerto Rico

Abstract  In this project we implemented a step

by step procedure, of how to configure the portable

cluster LittleFe, how to install the UNIX-LINUX

operating system to the LittleFe (Server) and

modifications to the GalaxSee Code. Also we will

see a brief description of what is a LittleFe cluster

and the associated hardware. The linux diestro

used in this project is very powerful to complete

tasks like this one. Galaxies are collections of

billions of stars; our home galaxy, the Milky Way,

is a typical example. New generations of stars are

born out of gas that condenses within regions

called giant molecular clouds, and the stars

sometimes form into star clusters. When a star

reaches the end of its evolution, it may return much

of its gas back to the interstellar medium, which

will be the source for a new generation of stars.

Galaxies can be thought of as systems that turn gas

into stars and back again. This is the reason why

this project is so important to understand even

more knowledge about galaxies.

Key Terms BCCD, CMOS, CUDA, MPI.

INTRODUCTION

LittleFe is a complete multi node Beowulf style

portable computational cluster designed as an

“educational appliance” for substantially reducing

the friction associated with teaching high

performance computing and computational science

in a variety of settings. One of these units were

donated to the Electrical Engineering. This project

explains the setup of the LittleFe, install of the

operating system for the LittleFe, and run a test

program in the LittleFe cluster.

The LittleFe cluster is an affordable method for

teaching computational science with innumerable

applications that is accessible to everyone. It is an

introductory level hardware into the world of

parallel computing that is designed with the

purpose of learning.

HISTORY

LittleFe began as an idea by Paul Gray

(University of Northern Iowa), Dave Joiner (Kean

University), Tom Murphy (Contra Costa College),

and Charlie Peck (Earlham College) in 2005. [2]

LittleFe started as a cluster of eight small PC

computers in separate cases. Unfortunately, the

separate cases, power supplies, and hard drives

made the system quite heavy, and was expensive to

bring on an airplane. The first step, therefore, was

to reduce weight. Then, they had to wrestle with

what software we would provide on the cluster.

They then started experimenting with running Paul

Gray's Bootable Cluster CD (BCCD) on the cluster.

This was much more maintainable than Debian, the

first OS they are implementing, but its live CD

nature meant it was difficult to have configuration

and data persist between reboots of the cluster. [2]

Ideally we wanted a single head node with a

hard drive, and have the rest of the nodes use the

network to run off that drive. The process we

settled on involved booting the node with the hard

drive into live CD mode, and then running a shell

script to copy the contents of the live CD to the

hard drive, and then configure that system to boot

the rest of the cluster nodes over the network. [2]

In November 2010 the LittleFe project was the

recipient of a grant from Intel to build 25 clusters to

be given to faculty across the United States who are

involved in computational science education. These

faculties will use their LittleFe clusters to improve

or develop curricula for their students, and

ultimately for such globally available resources as

HPC University (HPCU) and the Computational

http://bccd.net/

Science Education Reference Desk (CSERD).

[1][2]

BRIEF EXPLANATION

As mentioned in the introduction this cluster

was designed as an educational appliance for

reducing the friction associated with teaching high

performance computing (HPC) and computational

science in a variety of settings.[1][2][3]

The principle design constraints for LittleFe

are:

 $3,000USD total cost

 Less than 50lb (including the Pelican travel

case)

 Less than 5 minutes to setup

Minimal power consumption; less than 100

Watts peak, 80 Watts average

The current production LittleFe design is

composed of the following major components:

 (6) Mainboards (Mini-ITX, 1–2GHz CPU,

512MB–1GB RAM, 100Mb/1 GB Ethernet)

 (6) 12VDC-ATX power supplies

 320 Watt 110VAC-12VDC switching power

supply

 40GB 7200RPM ATA disk drive (2.5” form

factor)

 (1) 8 port 100Mb/1 GB Ethernet switch

 Fasteners, cabling, and mounting hardware

This portable cluster cost approximately $2500

and weighs less than 50 pounds and the setup can

be done in less than 10 minutes. So basically, the

LittleFe is a cluster of 6 nodes interconnected via

Ethernet connection and with only one head node

which is the only one with a hard drive. The

LittleFe supports shared memory parallelism

(OpenMP), distributed memory parallelism (MPI),

and GPGPU parallelism (CUDA). LittleFe makes it

possible to have a powerful ready-to-run

computational science and HPC educational

platform for less than three thousand dollars. Below

is shown a figure 1 of the LittleFe assembled. [2]

Figure 1

LittleFe Assembled

BEOWULF CLUSTERS

A Beowulf cluster is a computer cluster of

what are identical computers networked into a

small LAN with libraries and programs installed

that allow processing to be shared among them. The

result is a high-performance parallel computing

cluster from inexpensive personal computer

hardware. This same principle can be applied to

virtual machines. You could set up a virtual

Beowulf cluster using virtual machines. [2]

SETTING UP BCCD ON THE LITTLEFE

BCCD is a Debian based Linux distro

specifically made for clusters. Bootable Cluster

CD is intended for use as a pedagogical tool for

high school and college computational science

educators. Using the BCCD, one can quickly

setup a computer cluster with all the tools

needed to start teaching computational science

or parallel programming. Optionally, a

permanent cluster maybe automatically

configured by copying the live CD image onto a

hard drive. [2]

PROCEDURE TO BOOTING AND LIBERATE

THE LITTLE FE

These instructions are for the LittleFe project

with the BCCD software Version 3.3.1 (32 & 64)

bit. This version can be download the image file

(.iso) for your architecture (64-bit or 32-bit).

Extracted the (.iso) file to a USB for the installation

in the LittleFe cluster. [4]

 First it is needed to setup the computer to

accept a USB driver in the CMOS and also

setup the other nodes to accept BootTP for

later booting up from the main computer that is

the main node.

 After setting up the CMOS in the main

computer, put the USB Flash Drive with the

BCCD image in the USB port. Restart the

computer and continuously press the F11 key

until a blue screen appears asking to select the

boot device, choose to boot from USB Drive.

 After it begins the boot-up process from the

USB drive, select in the booting screen the

option Default.

 After several booting up processes and

installations, it will ask for the password of the

default user. The password needed for the

setup is: bccd.

 After that a screen is brought up about the

network showing “NO DHCP for eth0”. Skip

this option by selecting “YES”.

 If all is functioning properly, a screen that says

“WELCOME TO BCCD” will be displayed.

Press “okay” to continue.

 To liberate the BCCD script, in other words to

erase the installed BCCD program in the hard

drive, write the following command in the

black prompt:

sudo perl /root/liberate.pl --libdev /dev/sda

 Restart the computer once the script finishes by

running the following command:

sudo shutdown -r now

su

Newpass: letmein

reboot

 Then, remove the USB flash drive before the

computer boots, to allow it to boot from the

hard drive.

 After the LittleFe has restarted, execute the

following command to setup the computer to

send the IP address to the other nodes: bccd-

nic-setup.

 Then press enter and write the following

command: sudo /bin/bccd-reset-network.

 It will prompt for the password, it will be the

one used at setup: bccd.

 Select in the panel that appears (No) DHCP

after TURN PxE (YES)

 ETH1 (YES),

 Select to skip DHCP.

 Reboot the computer and turn on every node,

one by one. First, turn on the first node and if a

monitor is hooked up to it, the BootTP request

will be visible from BCCD in a running script.

When the node is given a name and number, do

the same to the subsequent five nodes until

they’ve all received a name and number

RUNNING THE TRIAL PROGRAM HELLO

MPI

 After the system reboot, use the blue screen.

 Enter the command: (cd bccd)

 Enter the command: (cd home)

 Enter the command: (cd bccd)

 Enter the command: bccd-snarfhosts

 Enter the command: cat machines-openmpi

 Now we can test the setup by running a

program.

 Enter the commands: cd Hello-world

 Enter the command: make clean

 Enter the command: make

 Now enter the command:

mpirun -np 2 -machinefile ~/machines-

openmpi ./hello-mpi.c-mpi

The number 2 in the previous command is the

total number of nodes in our setup. You may have

to adjust according to your setup. [3][4]

 If you would like to take a look at the code,

then you can use the following command: cat

hello-mpi.c

PROCESS TO MOUNT AND UNMOUNTS THE

USB

Use these steps to Littler Fe read the USB.

(This makes you the root user - aka the superuser,

which allows you to do things like manage flash

drives).

 Plug in the flash drive.

 Type: dmesg and hit enter. This will show a

lot of text including some about a device like

/dev/sdb. If it refers to sda instead of sdb, use

sda in place of sdb for the remainder of the

instructions.

 Type: mount -t vfat -o uid=bccd /dev/sdb1

/usr/local and hit enter. This says the directory

/usr/local is the top-level directory on the flash

drive. By copying files to /usr/local you are

copying them or from the flash drive.

 When you are done using the flash drive,

repeat step 1 above to become the root user

(aka superuser).

 Then type: umount -l /usr/local and hit enter.

Wait a couple seconds and then you can

remove the flash drive.

 At this point, you do not need to be the root

user anymore.

 You can return to being a normal user by

typing: exit

PROCESS TO EXECUTE THE CODE OF

GALAXSEE

Use this commands to execute the program of

GalaxSee.

 cd GalaxSee

 ls –l (to see the directory with extensions)

 make clean

 make

 mpirun -np 2 -machinefile ~machinefile

~machines-openmpi GalaxSee.cxx-mpi 1000

200 1000 1

 Note: these commands assume a 2 node cluster

running 1000 objects of 200 solar masses each

for 1000Myears, displaying the results in an x

Window.

GALAXSEE ORIGINAL CODE AND

SIMULATION

In the line 176 to 182 this is the part to change

the color of simulation of the galaxy and the line

209 to 250 is the part to create the loop over stars

and put a pixel in for each star all this code are in

the archive Gal.cpp of GalaxSee you can see the

original simulation in the figure 2.

Code:
Line 176 to 182

theColormap = XCreateColormap(dpy,

DefaultRootWindow(dpy),

DefaultVisual(dpy,DefaultScreen(dpy)),

AllocNone);

for (int i=0;i<numXGrayscale;i++) {

intcolor=(int)((double)i*35535.0/(double)numXGra

yscale)+30000;

 Xgrayscale[i].red=color;

 Xgrayscale[i].green=color;

 Xgrayscale[i].blue=color;

 XAllocColor(dpy,theColormap,&(Xgrayscale[i]));

 }

Line 209 to 250

if (dispX < imwidth/2) {

XSetForeground(dpy,gc,Xgrayscale[depthZ].pixel);

//XDrawPoint(dpy,buffer,gc,dispX,dispY);

XFillRectangle(dpy,buffer,gc,dispX,dispY,3,3);

 }

if (dispX > 0) {

XSetForeground(dpy,gc,Xgrayscale[depthY].pixel)

;

//XDrawPoint(dpy,buffer,gc,dispX+imwidth/2,disp

Z);

XFillRectangle(dpy,buffer,gc,dispX+imwidth/2,dis

pZ,3,3);

Simulation:

Figure 2

Original Simulation of GalaxSee

GALAXSEE MODIFICATION AND

SIMULATION

Code

First Modification is to change the color using

primary colors additive color system. Primary

colors are sets of colors that can be combined to

create the sensation of a range of colors. The

primary colors are red, green, and blue. Additive

mixing of red and green light produces shades

of yellow, that show in Figure 3, Mixing green and

blue produces shades of cyan, and mixing red and

blue produces shades of purple and mixing

nominally equal proportions of the additive

primaries results in shades of grey or white.

The color space that is generated is called an RGB

color space.

 The second modification is to change the stars

and rectangles to circles with the color cyan as seen

in the Figure 4 and the third Modification is to

change the color to purple and change the stars and

the circles to arcs, you can see this in Figure 5.

Finally the last step would be to fill the arcs with

any image. This final step will be achieved in

another project.

Line 176 to 182

theColormap = XCreateColormap(dpy,

DefaultRootWindow(dpy),

DefaultVisual(dpy,DefaultScreen(dpy)),

AllocNone);

 for (int i=0;i<numXGrayscale;i++) {

intcolor=(int)((double)i*35535.0/(double)numXGra

yscale)+30000;

 Xgrayscale[i].red=color;

 Xgrayscale[i].green=color;

 Xgrayscale[i].blue=color;

XAllocColor(dpy,theColormap,&(Xgrayscale[i]));

 }

Line 209 to 250

 if (dispX < imwidth/2) {

XSetForeground(dpy,gc,Xgrayscale[depthZ].pixel);

//XDrawPoint(dpy,buffer,gc,dispX,dispY);

//XFillRectangle(dpy,buffer,gc,dispX,dispY,3,3);

XFillArc(dpy,buffer,gc,dispX,dispY,10,10,0*64,36

0*64);

XDrawArc(dpy,buffer,gc,dispX,dispY,10,10,0*64,

360*64);

 }

 if (dispX > 0) {

XSetForeground(dpy,gc,Xgrayscale[depthY].pixel)

;

//XDrawPoint(dpy,buffer,gc,dispX+imwidth/2,disp

Z);

//XFillRectangle(dpy,buffer,gc,dispX+imwidth/2,di

spZ,3,3);

XFillArc(dpy,buffer,gc,dispX+imwidth/2,dispZ,10,

10,0*64,360*64);

XDrawArc(dpy,buffer,gc,dispX+imwidth/2,dispZ,1

0,10,0*64,360*64);

Simulation:

Figure 3

Original Simulation of GalaxSee with Color Yellow

Figure 4

Simulation of GalaxSee with a Circle in Color Cyan

Figure 5

Simulation of GalaxSee with Arc in Color Purple

REFERENCES

[1] SHODOR, “LittleFe Overview by its Designers”, 2014.

Retrieved on March 18, 2014 from:

http://www.shodor.org/media/content//petascale/materials/

general/presentations/littlefe-overview_pdf.

[2] LittleFe, “Home Page of Little Fe with a History”, July 16,

2013. Retrieved on April 1, 2014 from: https://littlefe.net/.

[3] Torres Andino, E. A., “Student of Parallel Computer

Project about the Installation and Setup of the BCCD in the

Little Fe”, Polytechnic University of Puerto Rico, February

20, 2013.

[4] BCCD, “Teaching Parallelism Made Easy”, February 18,

2014. Retrieved on March 20, 2014 from BCCD:

http://bccd.net/downloads.

http://www.shodor.org/media/content/petascale/materials/general/presentations/littlefe-overview_pdf
http://www.shodor.org/media/content/petascale/materials/general/presentations/littlefe-overview_pdf
https://littlefe.net/
http://bccd.net/downloads

