
Considerations on SQL Optimization Tools in MS Azure SQL Server Database using

SQL language

Arlene Rodríguez-Ortiz

Master’s in Engineering, Software Engineering

Dr. Jeffrey Duffany

Electrical and Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract ⎯ Databases are essential since are designed

to stored and organized data that can be easily managed

and accessed. They are crucial to many organizations,

companies, and are used in many aspects of our lives.

The relational database, based on the relational model,

and represented in a tabular way, is one of the most used.

Relational database management systems are used to

maintain them. One of the most known languages for

querying and maintaining relational databases is the

Structured Query Language. On this paper article, the

researcher explored different optimization tools in MS

Azure SQL Server Database that could bring information

that could help students and developers to optimize their

queries and improve performance.

Key Terms ⎯ Query Plans, Query Profiler, SQL

Optimization Tools, and Structured query language

(SQL).

INTRODUCTION

 Databases are a fundamental component of software

and management solutions. The user query them when he

searches through weather applications, social media,

virtual libraries, e-commerce; are used from hospitals

systems to different organizations. The database is

broadly defined as “a usually large collection of data

organized especially for rapid search and retrieval (as by

a computer)” [1]. Most likely the end user access

information through interfaces that leans into a one or

more storage of data implemented by software

developers, frequently a database.

Even though there are other ways to store data for an

application, the databases give possibilities of better

management. A database management system (DBMS)

is a software package designed to define, manipulate,

retrieve, and manage data in a database [2]. Also used as

an interface between the end user and the database.

There are several DBMS, among them Relational

DBMS. The focus of this study in the relational database

and RDBMS, which has tabular data concept. It is

important to mention the relational model as a starting

point when this subject is discussed. The model

introduced by Codd (1970), represents uniform data

structures in a database as a collection of relations. This

topic will be elaborate according to its relevance in the

study [3].

Most relational database management systems use

the Structured Query Language (SQL) to access the

database, a set-oriented query standardized language.

SQL remains currently a predominant in database

management systems. It has been incorporated into

several commercial databases management systems

products such as Microsoft SQL Server, Oracle

Database, and Postgres, among others. SQL knowledge

and skills are prevalent among the field of software

engineering, computer science, and information systems

[4].

 The developer that works with SQL language and

databases, must always try to optimize the queries to

improve application performance. Management systems

brings some tools, but there are other external and

describe as more robust tools that could be used to

address this practice.

 First, advanced query tunning tools of SQL Server

plans that could provide information and inquired in

database performance will be evaluated. This article has

the intention to explore different SQL optimization tools

for analyze and optimize queries, that might be useful to

other professionals, other than DBAs, developers for

example, and students, using the Microsoft Azure SQL

Database the SQL language. First, query optimization

should be defined. The tools that will be used are

SentryOne Plan Explorer and dbForge Studio Query

Profiler.

BACKGROUND

SQL language

 SQL was introduced in the early 1970’s at IBM.

Edgar F. Codd, a mathematician and computer scientist,

who worked at the IBM San Jose Research Lab, laid the

theorical foundation for relational databases. Relational

search procedures, as proposed by him, offered both

improved data independence and an enhanced

combinatorial freedom for the user [5]. He published a

paper, “A Relational Model of Data for Large Shared

Data Banks” [6], showing how information was stored in

large databases and could be accessed without knowing

how the information was structured or where it resided in

the database [7]. As mentioned before, in the book

“Computer fundamentals and RDBMS”, basically

relational models represent data as a collection of

relations. Relations resembles a table of values, each row

in the table represents a collection of related values,

which can be interpreted as a fact describing a

relationship instance. The table and column names are

used to help interpreting the meaning of the values in

each row. Commonly, values are of the same data type.

In relational database terminology the followings are

called: the tuple a row, the attribute a column and the

relation a table [3]. A relational database organizes data

into sets of interlinked tables [7]. Even though the

querying languages could vary on this study the focus

will be on SQL.

 After studying the relational model of Codd, Donald

Chamberlin and Raymond Boyce published the article

“Sequel: A Structured English Query Language”, which

described a detailed technical description of the language

syntax [8]. It was originally designed for an experimental

relational database system called SYSTEM R. Later been

the language for IBM’s DB2 and SQL/DS commercial

relational DBMSs [3]. Later was shortened to “Structured

Query Language” because SEQUEL had already been

copyrighted. The publication influences other vendors to

implement SQL, and that led to incompatibilities

between the different versions. In 1986 the first SQL

standard was published (SQL-86), standardized by the

American National Standards Institute (ANSI) and the

International Organization for Standardization (ISO).

Since then, has gone through nine revisions, SQL:2019

being the last. Each revision added additional features

[8].

 The SQL standard specifies the syntax and semantics

of two sublanguages: a schema Data Definition

Language (DDL) for declaring the structures and

integrity constraints (statements include operators like

CREATE, ALTER, DROP) and Data Manipulation

Language (DML) for declaring the database procedures

and executable statements of a specific database

application program (statements include SELECT,

INSERT, UPDATE, DELETE) [9]. A third unofficial

subdivision of SQL commands or sublanguage is the

Data Control Language (DCL), focus on data security.

These commands determine whether a user can carry out

a particular operation or not (such as GRANT,

REVOKE). The ANSI group these commands as part of

the DDL [10]. Even though the ANSI documentation

does not refer to the Transactional Control Language, the

commads of COMMIT and ROLLBACK are mention on

the Transactions part. These commands are used and

mention in the references of MS SQL Server and Oracle,

for example [9].

SQL allows users to retrieve, store, modify and

delete data. Also create modify and delete database

objects (e.g., tables), grant, and revoke user privileges,

and group statements in transactions. An SQL command

is called a statement, and a statement which retrieves data

from a database a query [4].

Query Optimization

 Query optimization is one of the factors that affect

application performance. In the context of DBMS, as

mentioned in the book, “Fundamentals of Database

Systems” [11], a query expressed in SQL (high-level

language) must first be scanned, parsed, and validated.

The scanner identifies the query tokens (keywords,

attribute names, relation names) in the text. The parser

checks the query syntax according to the syntax rules and

validated by checking that all attribute and relation names

are valid and semantically meaningful names in the

schema of the database. Later, internal representation of

the query is created, that could be either a tree or a graph

data structure (query tree or query graph, respectively).

Next, DBMS must devise the query plan or execution

strategy for retrieving the results of the query from the

database files. Based on this reference, the high-level

query steps are represented on Figure 1.

Figure 1

Query in high-level language

 Query optimization is the process of cautiously

choosing a suitable query plan from a space of possible

execution plans. The query block is the basic unit that

contains a single SELECT-FROM-WHERE expression,

it may include some clauses, example in Figure 2. The

query optimizer would choose an execution plan for each

query block. The code generator created the code to

execute the plan. The runtime database processor has the

task of running the query code (complied or interpreted)

to produce the query result.

Figure 2

Query Block (statement)

 Because the optimizer could fail in not choosing the

optimal strategy and finding the optimal is commonly

time-consuming and could require detailed information,

the authors of this book questioned the terminology

(“optimization”) of this process suggesting a more

accurate description like “planning of a good execution

strategy”.

 The high-level query being declarative in nature and

it needs the query optimization for queries. A relational

DBMS must systematically evaluate alternative query

execution strategies and choose a reasonably efficient or

near-optimal strategy. The query optimization module

only considers query plans that can be implemented by

the DBMS access algorithms (implements relational

algebra operations or combinations) and that apply to the

specific query, as well as to the specific physical database

design.

 There are two main techniques, usually combine,

employed during query optimization: heuristic rules

(ruled-based) and systematic estimate cost (cost-base).

Since the 1970’s there has been work related to query

optimization. Pat Selinger, which make a huge

contribution to the database industry and became a

leading member of the team that built System R,

developed a cost-based query optimization that makes

work with relational database more cost-effective and

efficient. It has been taught in many universities database

courses and adopted by most vendors. On an interview in

2008, Selinger [12] elaborates about the cost-based query

saying:

 “The trick to cost-based query optimization is

estimating a cost for each of the different ways of

accessing the data, each of the different ways of joining

information from multiple tables and estimating the sizes

of results and the savings that you would get by having

data in the buffer pools, estimating the number of rows

you'll actually touch if you use an index to access the

data, and so forth.

 The more deeply you can model the cost of accessing

the data, the better the choice you will make for an access

path.”

 The plans can be considered in terms of the optimal

and its robustness and having able to have good plans and

analyze in the process if the data is deviating from what

is expected. She expressed that you need to have

reasonable plans before you can fine-tune. She also

thinks that cost-based optimization could continue in the

route of automatic query optimization rather than put

programmers back into the game of understanding exact

data structures and doing the navigation in the application

program manually.

 Currently, exist some SQL optimization tools that

helps optimize SQL queries. Some optimizers that

analyze and created different execution plans, besides the

optimizer that comes with the RDBMS that can help you

to improve your database. The database administrators or

users should examine and tune the plans. The plans can

also give you the opportunity for indexes that might help

to improve performance. To address this matter some

databases, provide a plan table which return the cost and

time for executing a query [13].

PROBLEM

 The data management is crucial in any field of study.

As in many other things, the world of informatics thrives

on the collaboration, the share of knowledge and in the

support and integration of other resources.

 On this study the researcher aims to the path of

automatic query optimization without leaving important

considerations. Attempts to find working tools that

complement and improve databases; thus the

applications, that could be integrated in the developer

practices.

 This article has the intention to explore different

SQL optimization tools for analyze and optimize queries,

using the Azure SQL Server database, with the SQL

language, that might be useful. The tools that will be used

are SentryOne Plan Explorer and dbForge Studio Query

Profiler.

EQUIPMENT AND MATERIAL

Database

 Azure SQL Database is an intelligent, scalable,

relational database service built for the cloud. The

Microsoft Azure SQL Database is “a fully managed

platform as a service (PaaS) database engine that handles

most of the database management functions such as

upgrading, patching, backups, and monitoring without

user involvement. Azure SQL Database is always

running on the latest stable version of the SQL Server

database engine and patched OS with 99.99%

availability” [14].

 The database is query through the Azure Data Studio

with the following descriptions:

Version: 1.28.0 (user setup)

Date: 2021-04-15T00:24:15.710Z

VS Code: 1.51.0

Electron: 9.4.3

Chrome: 83.0.4103.122

Node.js: 12.14.1

V8: 8.3.110.13-electron.0

OS: Windows_NT x64 10.0.19041

RDBMS

The query plans are consulted on the Microsoft SQL

Server Management with the following descriptions:

SQL Server Management Studio

15.0.18338.0

SQL Server Management Objects (SMO)

16.100.41011.9

Microsoft Analysis Services Client Tools

15.0.19205.0

Microsoft Data Access Components (MDAC)

10.0.19041.1

Microsoft MSXML

3.0 6.0

Microsoft .NET Framework

4.0.30319.42000

Operating System

10.0.19041

Database Description, Schema and Data

 The database design and structure are based in some

components of a working web application database. It

was made completely in space just for testing. It does not

exposed fields or scripts. It is an Azure SQL database

with no elastic pool. Service Tier S0, DTUs:10, Included

Storage: 250 GB, Maximum Storage: 250 GB.

The database does not contain confidential and

sensitive data. We design the fields; add and adjust

datatypes through the Mackaroo [15] web application, a

free test data generator and API mocking.

Query Optimization Tools

• dbForge Studio Query Profiler: The query profiler

a visual tool for tuning query performance. The

execution diagrams show the slow-executing nodes.

Each query in the batch is analyzed is displayed with

the cost of each query as a percentage of total batch

cost. It has Wait Stats, displays explain results, top

operations list, and table I/O. It indicates positions

were adding an index to a table, optimizing tables

joining, etc., could increase SELECT performance.

Also, profiling results history and comparison [16].

• SentryOne Plan Explorer: Plan Explorer is a single

installation file containing the application and the

SSMS add-in which give the option of directly go

from SSMS to the tool. In terms of speed, it helps

you to the root of query tuning issues by pointing the

issues that might exist in the execution plan. This

includes highlighting from expensive operations, to

allowing you to sort by any metric in most grids.

Plan Explorer exposes many details about plan

operators. Regarding visibility, with Actual

execution plan generation, you can see runtime

metrics without manually setting statistics options or

digging into a plan's properties [17].

METHODOLOGY

 For the experimental evaluation, real life examples

of tables, views, and procedures were created. The

database objects recollect diverse of operators and

complexity to test against the optimization tools. As

mentioned, testing data records on every table were

created.

 The tools were created in terms of what it brings for

query analyze and/or in terms of help improved

performance. Also, other tools that would help to build

or add to the query, were considered. One of the criteria

was that the tools must be compatible with MS Azure

cloud database. Also, that tool presented additional

functionalities apart from those that the SSMS brings.

 As an example, to see analysis and have information

to measure performance, the same specific query was

executed, before and after creating a suggested index,

that could help in the performance. The objective was to

see what, and which information will be presented in both

tools.

 To evaluate performance, it was considered the

following data metric columns: Duration, CPU, and

Reads. To evaluate performance, you must consider all

the aspects mentioned together in the execution. The

columns were obtain executing Actual plans. The Actual

plan shows the real steps of calculation, unlike the

estimated execution plan that is based on the statistics

that could be outdated and are stored in the plan cache

without the need of execution. To obtain these metrics

Actual Plan will be needed.

RESULTS AND DISCUSSION

The findings are the following by tool:

SentryOne Plan Explorer

 First tool: The Plan Explorer of SentryOne was easy

to install and well documented. The example query was

executed, before the index, to see the structure,

information, and the results.

Figure 3

SentryOne Plan Explorer Table I/O results of the query example

execution, before the index, on the Actual plan execution

 The tool included: Table I/O, (presented in the

Figure 3), Plan Diagram, Query Columns, Plan Tree, Join

Diagram, Top Operations, and Index Analysis.

 After creating the index, the same query was

executed on the Plan Explorer, to compare the results.

Figure 4

SentryOne Plan Explorer Table I/O results of the query example

execution, after the index, on the Actual plan execution

 Different results were presented in the total of

Logical Reads (Figure 4). The tool presented a way to

measure, and some improvement, even though the

Duration and CPU remained the same. It helps in the way

that it shows that the index reduces the total of logical

reads. You would want to have the least number of reads

for faster response and better performance; in this context

where the Duration and CPU remains the same. There is

significance in the context since there could be an

exception, were creating an index could cause more

logical reads, however a significance reduction of CPU

and Duration, and still improved.

 In terms of analysis, the Plan Diagram presented

detailed information where can be seen the most

expensive operations and optimize the SQL code

accordingly. The plan tree showed the difference

highlighted between the Estimation and Actual rows.

This is important because it could indicate a problem

with statistics for one or more tables/indexes in the query

that could be updated. It also included the Index

Analysis, which is divided by nodes. It shows table

column information: density, last statistics updates, an

option to update statistics, Avg Length, Estimated Size,

Predict etc.

dbForge Studio Query Profiler Results

 Second tool: Using dbForge Studio Query Profiler.

Aspect of analysis were examined by executing the

example query, before the index, with the live query

profiling mode. The example query was executed, after

the index, to see the structure, information, and the

results.

Figure 5

dbForge query profiler: Plan Tree, shows the result of the

example query on the live query profiling mode.

 The results were presented on this format: Plan

Diagram, Plan Tree (Figure 5), Top Operations, Table

I/O, Plan XML. The plan tree table shows the Actual

Rows, in the diagram “Act Rows”, fields found in an

Actual Plan.

 However, the Table I/O which contains the columns

of the metrics (Logical Reads, Scan Count) that were

necessary, did not bring any information (Figure 6).

Figure 6

dbForge query profiler: Table I/O with columns like (Logical

Reads, Scan Count)

 Due to this lack of information, different result in

those fields could not be compared and analyzed. In other

cases, some results were contemplated, since is part of

the structure. But after trying several queries (selects and

an update) it did not show. This could be due to there is

not a full Actual Plan available.

 The Plan diagram presented, as well, detailed

information where can be analyze the most expensive

operation or could be useful to investigate why the query

optimizer chose one plan to another.

 Additionally, even though there was not part of the

query profiler and not an automatic tool for query

reformulation there was very useful tool, a query builder

by Devart dbForge, that helped build complex SQL

queries through visual interface without manual. It

simplifies the development of SQL queries and could

help students and users who often create database

queries.

CONCLUSION

 The tools were very helpful in demonstrating how

queries, as developers, impacts the performance; in

showing valuable information to detect inefficiencies and

to have better practices and participation on this task.

Both presented Plan Diagrams, Plan Trees (that gave

attention by highlighting discrepancies, high cost, or

aspect that required attention), Top Operations, among

other features.

 The first tool seems to be effective in showing how

a query could improve performance. It also gives more

information respecting the structure and the columns on

the Table I/O, and has extra columns regarding the page

server reads. It seems to work on giving results as well.

 The second tool, besides the example used in the

previous section along with other queries, did not

presented results on the table I/O.

 Also, the first tool gave an Index Analysis, that help

the tools of performance by updating statistics directly.

This could be investigated in detailed in a future

investigation.

 The study demonstrates that SQL performance

tuning can make use of variety of techniques and tools

together. The tools for query tunning are complex, and

mostly show through processes and statistics that need to

be studied. There should be farther study on this tool. The

researcher considered there is more to explore through

other sources and with these providers of database

performance monitoring and solutions.

FUTURE WORK

 It would be relevant to keep using these tools and

give more documentation on real scenarios, that could

help other studies in demonstrate the possibilities of these

tools and utilize them in other spaces, like the academic

area. Furthermore, innovation, automation, and precision

in the management of plan execution, and education on

this matter.

Also, there were some limitations trying other

automatic optimization tools either due to problems with

compatibility with cloud systems and types of databases,

administrative and validation problems or because they

were on the beta stage. The automatic query tools are

limited in suggesting mostly indexes.

For future work it would be interesting to see more

accessible tools, more compatible with different

environments, and keep using and testing this research

results to tried on other investigations.

REFERENCES

[1] "Merriam-Webster," MERRIAM-WEBSTER
DICTIONARIES, [Online]. Available: https://www.merriam-

webster.com/dictionary/database. [Accessed 05 March 2021].

[2] "techopedia," [Online]. Available:
https://www.techopedia.com/definition/24361/database-

management-systems-dbms. [Accessed 30 April 2021].

[3] S. Vaze and S. Joshi, Computer Fundamentals and RDBMS,

Global Media, 2009.

[4] T. Taipulus and V. Seppanen, "SQL Education: A Systematic

Mapping Study and Future Research Agenda," 2020. [Online].

Available:

https://www.researchgate.net/publication/342759889_SQL_Ed

ucation_A_Systematic_Mapping_Study_and_Future_Research

_Agenda. [Accessed 04 April 2021].

[5] D. Gugerli, "The world as databse: on the relation of software

developmnet, query methods, and interpretative independence,"
2012. [Online]. Available:

https://www.researchgate.net/publication/314438214_The_Wor

ld_as_Database_On_the_Relation_of_Software_Development_
Query_Methods_and_Interpretative_Independence. [Accessed

07 May 2021].

[6] E. F. Codd, "A Relational Model of Data for Large Shared Data
Banks," 1970. [Online]. Available:

https://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf.

[Accessed 30 April 2021].

[7] K. Wickett and A. Thomer, "Relational data paradigms: What do

we learn by taking the materiality of databases seriously?," 2020.

[Online]. Available:
https://journals.sagepub.com/doi/10.1177/2053951720934838.

[Accessed 30 April 2021].

[8] D. D. Cahmberlin, "Early History of SQL," 2012. [Online].
Available:

https://web.archive.org/web/20160304073050/http://dbis-

informatik.uibk.ac.at/files/ext/lehre/ss11/vo-ndbm/lit/ORel-

SQL1999-IBM-Nelson-Mattos.pdf. [Accessed 19 April 2021].

[9] American National Standard Institute, "American National

Standard for Information Systems-Database Language-SQL,"
1986. [Online]. Available:

https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub127.pdf.

[Accessed 02 March 2021].

[10] A. I. Din, Structured Query Language (SQL): a Practical

Introduction, Blackwell Pub, 1994.

[11] R. Elmasri and S. Navathe, "Fundamentals of database systems,"
2007. [Online]. Available:

https://www.auhd.site/upfiles/elibrary/Azal2020-01-22-12-28-

11-76901.pdf. [Accessed 09 April 2021].

[12] "Database Dialogue with Pat Selinger," December 2008.

[Online]. Available:

https://cacm.acm.org/magazines/2008/12/3355-database-

dialogue-with-pat-selinger/fulltext. [Accessed 03 May 2021].

[13] S. Chaudhuri, "An Overview of Query Optimization in

Relational Systems," 1998. [Online]. [Accessed 22 04 2021].

[14] S. S. e. al, "Microsoft Documentation," Microsoft Corporation,

21 09 2020. [Online]. Available: https://docs.microsoft.com/en-

us/azure/azure-sql/database/sql-database-paas-overview.

[Accessed 30 April 2021].

[15] M. Brocato, "mockaroo," Mockraoo, LLC., [Online]. Available:

https://www.mockaroo.com/. [Accessed 08 May 2021].

[16] Devart, "SQL Query Plan Tool," [Online]. Available:

https://www.devart.com/dbforge/sql/studio/sql-query-

profiler.html. [Accessed 30 April 2021].

[17] "IBM Documentation- Query Optimization," IBM Corporation,

2014. [Online]. Available:
https://www.ibm.com/docs/en/db2/11.1?topic=performance-

query-optimization. [Accessed 05 March 2020].

[18] SolarW inds World Wide, "Plan Explorer," [Online]. Available:
https://www.sentryone.com/plan-

explorer?hsCtaTracking=40dc738e-8792-49e1-b2cb-

0d3be75bdc75%7Cefa15c6f-a7e2-446a-9879-676bd6629789.

[Accessed 10 May 2021].

[19] A. Yaseen, "SQL Shack SQL Server Estimated Vs Actual

Execution Plans," 29 December 2016. [Online]. Available:
https://www.sqlshack.com/sql-server-estimated-vs-actual-

execution-plans/. [Accessed 1 May 2021].

