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Abstract ⎯ Streak2O is a machine learning data 

augmentation algorithm based on the combination 

of two other independent algorithms: Streak and 

Droplet. These three augmentations are 

implemented as non-trainable TensorFlow custom 

Keras layers to optimize execution time in a GPU 

based environment. They generate configurable 

random artifacts that imitate real life handwritten 

historical document or manuscript water damage 

and document mishandling. Testing this 

augmentation algorithm with small subsets of the 

NIST-SD19 dataset on a convolutional neural 

network architecture shows that they can help 

reduce neural network overfitting falling partially 

into the category of synthetic data generation. 

Key Terms ⎯ Handwritten Text Recognition, 

Machine Learning, Synthetic Data Augmentation, 

TensorFlow. 

INTRODUCTION 

One of the most widely studied problems in the 

field of pattern recognition and computer vision is 

optical character recognition (OCR) [1]. 

Handwriting Text Recognition (HTR) is a sub field 

of OCR that relates to detecting and classifying 

non-mechanized characters, those written with ink, 

graphite, or other substances over a physical media. 

HTR imposes its own challenges including 

segmentation, style variation by writer, irregular 

spacing and orientation, usage of non-standard 

symbols, and noise caused by degradation and 

mishandling [2][3]. 

An increase computational power and new 

tools for the usage of machine learning (ML) 

algorithms have influenced the way OCR and HTR 

are handled. Traditional approaches split the HTR 

problem into two main parts, segmentation, and 

classification [4][5]. It is important to distinguish 

online and offline recognition. “In online 

recognition a time series of coordinates, 

representing the movement of the pen-tip, is 

captured, while in the offline case only an image of 

the text is available” [6]. M. Liwicki, et. al. [7] 

captured life features from the users such as tracing 

speed that are not available when working with 

documents.  

Semantic segmentation [8] and image 

classification [9][10] have shown promising results 

with the usage of convolutional neural networks 

(CNN) and deep CNN (DCNN). Each of these 

processes is equivalent to the two-step classic 

processing of HTR, segmentation and classification. 

This opens the possibility of designing an end-to-

end neural network that can perform both tasks. Shi, 

et. al. [11] have a proposal for such an end-to-end 

DCNN applied to scene text recognition. Long 

Short-Term Memory (LSTM) units are commonly 

combined into the newer ML neural networks used 

for HTR as they can help classify by using the 

sequential appearance of features extracted by prior 

convolutional layers [1]. Namysl and Konya 

proposed using bidirectional LSTM units to achieve 

better results and indicate that Google's open-

source Tesseract engine makes use of a similar 

neural architecture [1]. 

In image classification, augmentation 

algorithms are routinely utilized to enrich image 

data sets. Augmentation has two main purposes, 

generating synthetic data to enrich small data sets 

and to reduce overfitting over the training data. 

TensorFlow [12] and MATLAB [13] offer built-in 

tools for implementing common image 

augmentations such as rotation, horizontal or 

vertical reflection, scaling, translation, and shearing. 



Literature offers additional augmentation methods 

useful for image classification [14][15][16]. 

CutOut is an augmentation technique that 

replaces a squared block in of the image with a 

constant colored or Gaussian pattern. CutOut 

showed varied improvement in validation accuracy 

for image classification depending on the size of 

the cutout region. This technique has the benefit of 

not being computationally intensive and therefore 

allowing it to be in-line with the neural network 

training [14]. 

“CopyPairing is a mixture of Copyout and 

SamplePairing"[16]. Copyout is an enhancement of 

CutOut, proposed by P. May, that replaces a square 

area from an image with a square area from a 

different image of the data set. SamplePairing, 

proposed by Inoue, uses an image of averaged 

colors from two images of the same class to train 

the network [15]. CopyPairing, proposed by May, 

mixes Copyout and SamplePairing augmentation 

techniques in alternating schedules during training. 

The result is a lower error rate against the test data. 

May theorizes that the imperfect sampling provided 

by these augmentations allows the neural network 

to focus on relevant features and distinguish them 

from misguiding details [16]. 

In general, the modified samples used for 

training are generally considered a type of synthetic 

data. For OCR and HTR, it is possible to generate 

synthetic data that is not based on a previous data 

set. Jaderber, et. al. [17] and Ahmad, et. al. [18] 

generated training samples by using different 

computer font typefaces that are then process by 

multiple random transformations. Ahmad, et. al. 

evaluated different type faces individually on its 

word recognition rate (WRR) against real world test 

samples and later trained with combined typefaces 

which reached a higher WRR. 

DEVELOPMENT OF IMAGE 

AUGMENTATIONS 

Development of the text image data 

augmentation algorithms follow a four-step process. 

A MATLAB proof of concept for both the Streak 

and Droplet augmentations was followed by three 

stages that focused on making the algorithms more 

efficient while combined with the TensorFlow 

Sequential [12]. 

The first development outside of MATLAB 

was performed under python using the CuPy [19] 

library as it offers an API for GPU accelerated 

operations based on the Nvidia CUDA library. The 

Streak and Droplet algorithms offered very good 

speed while using the CuPy library. However, when 

combined with TensorFlow and Keras this version 

of the code had two main problems. 

Firstly, the CuPy library could not deliver its 

arrays located in the GPU directly to the 

TensorFlow model. CuPy arrays had to be send 

back to CPU/RAM as NumPy arrays that could 

then be accepted by the Keras ImageDataGenerator 

object and then back into the model as Tensor 

objects. Transmission of data from CPU memory to 

GPU memory greatly slowed the training during 

model fit. 

Secondly, as the CuPy library takes over part 

of the GPU memory, this memory becomes 

inaccessible to the TensorFlow Library. In fact, the 

CuPy library had to be loaded first or TensorFlow 

would take possession of the GPU's RAM, as 

desired to allow training of larger models and 

batches, and the CuPy library would not load. 

The similarities between CuPy and NumPy 

allowed the transition of the code from GPU 

execution to CPU execution quite easily. This new 

code working in the CPU made inaccessible the 

parallelism capabilities offered by the multiple 

GPU cores. However, by removing the conflicts 

between the libraries and reducing data 

transmission between CPU memory and GPU 

memory, the algorithm developed on top of the 

NumPy library running exclusively in CPU proofed 

faster for model training. 

The last two approaches to the development of 

this algorithms considered inserting the 

augmentation as a prepossessing function within 

the keras ImageDataGenerator object. This object 

already offers common data augmentation 



procedures such as flip, rotation, shift, zoom, 

brightness, and shear. 

A TensorFlow custom layer would insert the 

augmentation stage as the first layer of the model. 

These layers are not trained as they perform 

random transformations on the input data. They can 

be activated and deactivated randomly, selectively 

or by schedule by combining their usage with 

custom callback functions. They offer increase 

speed by utilizing the tensor object operation 

parallelism. 

Previous image augmentation methods have 

shown to increase classification accuracy for object 

detection [14][15][16]. However, unlike the 

augmentations in this document, those 

augmentations do not translate directly to real 

examples of image degradation for handwritten 

documents or historical manuscripts. The 

augmentation effects proposed and developed in 

this project intend to imitate real world patterns 

found in water damaged manuscripts [2][3]. 

DESCRIPTION OF ALGORITHMS 

The algorithms developed here are inspired in 

real world artifacts, that physical media may 

develop due to mishandling or environmental 

effects. The algorithms' objective is to generate 

realistic synthetic data or augment small datasets.  

Ink and Floating-Point Operations 

The algorithms developed consider the text 

over a background as pool of ink with different 

concentrations. Due to this any image received by 

the algorithm needs to be transformed into a 

floating-point value range from 0 to 1 where 0 

represents background and 1 represents text as 

shown in Figure 1.  

The original MATLAB and early Numpy 

algorithm could only handle grayscale images, but 

the current Numpy and the TensorFlow algorithms 

can work with single channel or three channel 

images. To achieve realistic artifacts in the 

augmented images, the algorithm may need to work 

with the image negative to appropriately map ink. 

Figure 2 displays the artifacts generated when 

failing to invert colors on the right compared to the 

default behavior on the left. 

 

Figure 1 

Single Channel Ink Mapping 

 

Figure 2 

Examples of Droplet and Streak Augmentation 

During the MATLAB proof of concept, the 

original images where initially cleaned simply by a 

low pass filter to affect only relevant text ink, but 

this proved to remove artifacts from the original 

source that gave the image variability and realism. 

Finally, the algorithm used a K-means algorithm to 

classify the image pixels and determine which 

image regions represented ink. This K-means 

approach allowed the image to retain its original 

artifacts. When the algorithm was moved to CuPy 

and then to NumPy the same steps were followed 

by using the K-means algorithms offered by 

OpenCV. 

The text mask produced from the the K-means 

algorithm was a float valued mask. After initial 

erosion, the values masked where set to a full mask 

with value of 1.0. The mask is then dilated further 

than the original size and given a mask value of 0.5. 



This produced a mask with a contour gradient 

which avoided hard lined effects on the execution 

of the augmentation, producing color boundaries on 

the limits of a hard-set mask. Preferably the 

contours would follow a multi-step gradient, but the 

0.5 contour produced realistic effects. This float 

valued mask was multiplied against the original 

image to capture the inked areas. 

Proof of Concept 

The first iteration of the Streak augmentation 

was both highly iterative and recursive. The Streak 

augmentation proposed uses a K-means (n=2) 

algorithm to classify pixels between ink and 

background as described earlier. The mask 

generated was used to first take a random percent of 

the ink recursively at different steps of the 

predetermined path and leave a trace of the taken 

ink in the direction of the path, observe Figure 3. It 

intends to imitate the effect of an object displacing 

ink along the surface of the text as would happen 

with fresh ink or pencil graphite. 

After obtaining the K-means mask, it was 

multiplied pixel by pixel against the input to extract 

the ink of the affected area. The matrix of the ink 

inside the mask is called the take. This take was 

constructed from the extraction achieved by 

combining the K-means mask with a circular region 

mask created from a parametric distance calculation. 

The take is then partially dropped along a path of 

pixels living a trace of ink. If the path was too long 

the iteration extracted ink from further steps along 

the path until the end of the path was reached. 

 

Figure 3 

Example of Streak Augmentation 

To avoid concentrating the ink at the end of the 

path, the midway extractions and tracing of the ink 

had to be performed before the original. This meant 

that the initial take, and path calculation had to stay 

in memory waiting to be used until all its children’s 

iterations were performed, this version of the Streak 

augmentation was a recursive function. To maintain 

efficiency the next step of the recursion only 

happens after δ×R pixels along the path, where R 

was the radius used to calculate the parametric 

distance, the radius of the regional mask, and δ is 

configurable fractional multiple, 0.5 by default. In 

this sense approximately L÷(δ×R) steps for L the 

length of the path, and R and δ as previously 

defined. 

Current TensorFlow implementation does not 

perform mid-path operations. By using the translate 

function from TensorFlow Addons [12] it can 

follow paths on any angle. The MATLAB and 

NumPy algorithms were limited to pixel size shifts 

to perform efficient translation. With the 

TensorFlow Addon translate function, batch 

translations of stacked gradients can be translated in 

different directions, and to different distances. Two 

loops in the previous iterations became a single 

loop with parallel computing that allowed 

movement in more flexible angles. Although this 

improves speed of execution, eliminating the 

double loop also limits the capacity of recursive 

execution, as each execution occupies Lmax×B 

times the size of a single input, where Lmax is the 

configurable max length of a streak and B is the 

batch size during training. 

TensorFlow Noise Handling 

Custom TensorFlow Keras layers fall in two 

main categories: dynamic and non-dynamic. 

Dynamic layers allow for a broader set of control 

mechanics where the developer can intermingle 

python logic with TensorFlow logic. Dynamic 

layers however cannot be executed using eager 

execution [12] as eager execution prohibit python 

logic to access values from the CPU during run-

time. Although disabling Eager Execution allows 

development of tools using python logical 

operations it also slows down execution due to the 

communication between the CPU RAM and video 

memory in the GPU. 



Non-dynamic custom layers can run under 

eager execution but cannot make use of non-

TensorFlow logic as memory exchanges between 

CPU and GPU are restricted. Non-dynamic layers 

variables are stored in tensor arrays or tensor 

constants which restricts the type of operations that 

can be performed against the data. Non-dynamic 

custom layers proofed to be much faster both 

during training and during evaluation making them 

the preferable development environment for any 

real-world implementation. 

 

Figure 4 

Example of Streak Augmentation 

Due to execution constrains of the TensorFlow 

eager execution, predictable loop size, the K-means 

approach was abandoned. The noise handling 

algorithm for the non-dynamic layers also maps 

input values into a float range from 0 to 1. This 

algorithm clips the values to a random value 

between a fourth and a third of each channel 

average (the average color), as seen in Figure 4. 

The values below the threshold are kept in memory 

to be reintroduced into the image. The values 

clipped above the threshold are passed to the 

augmentation algorithm that generates a modified 

output. After  

The noise is reintroduced to the output after the 

augmentation algorithm to preserve any artifacts 

present in the lower valued pixels of the original 

image. This clipping approach allowed parallel 

execution between batch images within the 

TensorFlow eager execution environment. 

Previous image augmentation methods have 

shown to increase classification accuracy for object 

detection [14][15][16]. However, these methods do 

not translate directly to real examples of image 

degradation for handwritten documents. The 

augmentation effects proposed in this project intend 

to imitate real world patterns found in water 

damaged manuscripts. Although initial design into 

this effect considered parametric, iterative, and 

recursive operations, during design recursive 

execution was exchanged by iterative operations 

that could be translated into matrix operations and 

therefore TensorFlow layers. 

TensorFlow Memory Requirements 

The memory requirements of the TensorFlow 

implementations are predictable. The Streak 

augmentation, and therefore the Streak2O 

augmentation, memory increases at a cubic rate of 

the max length. In particular if we assume that the 

max length is linearly related to one of the inputs 

dimensions, for example 
 

where  and  are the dimensions of the input 

size and σ is a constant ratio, then assuming the two 

dimensional input has fixed aspect ratio, if 

, the image becomes  times wider 

with the same aspect ratio, the augmentation will 

require k³ more memory to execute. 

Observe that, given the above, if we define 

memory requirements as  

where  is the memory required by a single pixel 

then: 

 (1) 

 

 

 

 (2) 

It should be possible to reduce memory 

requirements by restricting  to a multiple of 

average character height instead of the image size. 

Droplet Augmentation 

The Droplet augmentation proposed also uses a 

K-means (n=2) masking algorithm to detect ink 



areas. It generates a circular gradient effect around 

a center point with a color density equivalent to the 

display color density removed from the masked text. 

Figure 5 displays this effect on the right side. 

 

Figure 5 

Example of Streak Augmentation 

The Droplet Augmentation was designed to 

imitate the effects of water on ink text on paper. 

The idea is that ink diluted by water drops tends to 

form a darker ring at the end of the water flow 

through and on top the paper. The original 

MATLAB and NumPy algorithms only differ from 

the TensorFlow algorithm in terms of the noise 

removal procedure. However, with the parallelism 

used in the new TensorFlow Streak algorithm, the 

Droplet Augmentation was enhanced to combine 

multiple gradients into an irregular gradient that 

could be used to create shapes other than a single 

circular region. The custom layer accepts an 

additional argument during build called repetitions 

that sets the number of circular regions to combine. 

Unlike the Streak augmentation, the repetition 

argument need not be configured in terms of the 

input size and should only cause lineal increments 

in memory requirements, instead of the exponential 

growth from the Streak length as shown in 

Equation 1. 

Streak Augmentation 

Figure 5 left side displays an earlier version of 

the Streak augmentation which had not yet 

implemented any form of masking mechanism. 

This earlier implementation affected the 

background color. By using masking, the alternate 

version shown in Figure 6 avoided generating the 

previous circular background artifact. 

 

Figure 6 

Streak Augmentation using a Mask 

Data Sets 

The NIST Special Database 19 (NIST-SD19) 

[20] is compose of samples of 62 categorized 

characters and symbols. The dataset offers a special 

organization for these categories under the 

‘by_merge’ directory, where upper- and lower-case 

symbols that cannot be distinguished are integrated 

into a single category during training. The dataset 

offers non-grayscale, black and white handwritten 

characters over a noiseless white background. 

The ICDAR 2017[21], from the International 

Conference on Document Analysis and Recognition, 

is composed of historical manuscripts. ICDAR 

2017 was used to test the realism of the artifacts 

generated on actual documents and achieve results 

like the ones observed in examples such as seen in 

previous research [2][3]. 

Streak2O Augmentation 

Streak2O is a combination of both the Streak 

and the Droplet augmentations performed in 

sequence, in that order. It therefore would share 

memory requirements and configurations with both 

augmentations. 

DESCRIPTION OF TENSORFLOW LIBRARY 

TensorFlow Layers 

The final augmentation algorithms designed 

may run both in and out a TensorFlow eager 

environment. They are all based on a custom layer 

called activateLayer that allows interaction with 



callbacks for TensorFlow custom control. Current 

TensorFlow implementations do not trigger 

callback events between batches during eager 

execution. Due to this limitation, TensorFlow 

Variables used to control the flow of execution can 

only be updated at the start or end of an epoch by 

custom callbacks. 

responsiveLayer 

The responsiveLayer is the base layer that 

includes functionality to interact with the 

activateLayer callback to include flow control 

during training and evaluation. 

Parameter usage for the responsiveLayer can 

be found in Table 1. This layer class also includes 

methods required to interact with the activateLayer 

callback: activate, deactivate, activate_out_of_-

training, deactivate_out_of_training, and operation. 

Table 1 

Parameters of responsiveLayer constructor 

Parameter Description 

dtype Sets the data type for the Tensor objects inside a 

layer. 

batch_size Required as it is not necessarily given by a 

previous layer as part of the build method.] 

dynamic If false allows the layer to be used in 

TensorFlow eager execution. 

trainable Defaults to False. Augmentation layers are not 

expected to learn weights during training. 

name Defaults to “identity”. This layer is meant to be 

a parent class for augmentation layers. 

kwargs Accepts other named parameters. 

 

The activate and deactivate methods are used 

to control the augmentation during training. The 

activate_out_of_training and deactivate_out_of_-

training are used to control the augmentation during 

evaluation and testing. 

The streakLayer inherits behavior from respon-

siveLayer. This class creates a non-trainable layer 

that performs a random streak on each image in the 

batch. The streaks positions, sizes and directions 

are randomized and not shared between images of 

the same batch. 

It can be customized using the parameters in 

Table 2. Parameters shared with the responsive-

Layer behave as previously described. 

Table 2 

Parameters of streakLayer constructor 

Parameter Description 

seed Sets a randomization seed to allow repeatable 

behavior if desired.  

negative If True(default), do nothing, else inverts input 

before and after augmentation. 

distance 

multiplier 

Represents what percent of the smallest side's 

length should be considered the maximum 

length of a streak over the image. 

radius 

multiplier 

This multiplier allows customization of average 

radius or the initial take that defaults to half the 

length of the smallest side. 

height 

limits 

A tuple that defaults to (0.2, 0.8). Boundaries in 

percent for the vertical initial center of the 

effect in respect to the image. 

width 

limits 

A tuple that defaults to (0.1, 0.7). Boundaries in 

percent for the horizontal initial center of the 

effect in respect to the image. 

ink percent A tuple that defaults to (0.8, 0.95). Boundaries 

of the random percent amount of ink removed 

from the initial position. 

 

The dropletLayer inherits behavior from 

respon-siveLayer. This class creates a non-trainable 

layer that performs one or more random droplets on 

each image in the batch. The droplets positions and 

sizes are randomized and not shared between 

images of the same batch. 

The dropletLayer can be customized using the 

parameters in Table 3. Parameters shared with the 

previous layers behave as previously described. 

The streak2OLayer inherits behavior from 

responsiveLayer and includes one instance of each 

previous augmentation, streakLayer and 

dropletLayer. This class creates a non-trainable 

layer that performs a streak and one or more 

random droplets on each image in the batch. The 

positions, sizes and directions of the augmentations 

are randomized and not shared between images of 

the same batch. 

The parameters of the streak2OLayer have all 

been covered as part of the parameters for the 

responsiveLayer, the streakLayer and the 

dropletLayer. Parameters with the prefixes 



‘streak_’ and ‘grad_’ refer to the streakLayer and 

the dropletLayer components of the streak2OLayer, 

respectively. 

Table 3 

Parameters of streakLayer constructor 

Parameter Description 

repetitions Sets the number of droplets to draw on each 

image. Defaults to 15. 

radius 

multiplier 

This multiplier allows customization of average 

radius or the initial take that defaults to a third 

of the length of the smallest side. 

 

TensorFlow Custom Callbacks 

The activateLayer callback used in junction 

with custom layers, derived from responsiveLayer, 

to conditionally activate or deactivate the 

augmentation at epoch begin. Allows configuring 

an initial number of epochs of training without the 

augmentation active. The callback can also follow a 

pattern of n epochs with the layer active followed 

by m epochs with the layer deactivated. The 

‘sleep_init_epochs’ is an integer valued parameter 

that maintains an augmentation layer inactive for a 

given number of epochs at the start of training. The 

‘sleep_wake_pattern’ is an iterable of two integer 

values parameter that describes a pattern of number 

of alternating active and inactive epoch lengths.  

The captureObservations callback is derived 

from keras base Callback class. It was designed as a 

low computational cost alternative to the 

TensorBoard callback that captures a great set of 

information during model training. The callback 

has triggers in three training events: “on_-

train_begin”, “on_train_end”, “on_epoch_end.” It 

references the best validation accuracy to keep a 

copy of the best model weights and can trigger a 

training early stop after a set number of consecutive 

epochs finishes without better accuracy or loss. The 

model also tracks loss and validation data across 

epochs to populate the database and keeps backup 

of best epoch and checkpoint epoch weights. 

NEURAL NETWORK DESIGN 

The code developed for this project includes a 

customize builder of Simoyan, K. and Zisserman, A. 

like models [10]. Their architecture proposes using 

multiple convolutional layers with small receptive 

field in sequence to simulate a larger receptive field. 

The model builder receives four tuples that describe 

the number of convolutional sets, if a convolutional 

set has an extra padding convolutional layer, if 

dropout will be used after a max-pooling, and the 

number of dense layers used before finishing with 

an argmax activation. These tuples also specify the 

number of filters for each convolutional set and the 

number of nodes in the dense layers. 

Current training is using less convolutional 

layers and more dense layers to construct a system 

more prone to overfitting to test if the augmentation 

layers can delay this occurrence. 

TRAINING AND TESTING AUGMENTATION 

Evaluating Augmentation 

To test the efficacy of the new augmentation 

methods we will use a control group where training 

will not include any type of augmentation using 

four predefined randomization seeds to create and 

feed 9 different train sample sizes from 20,000 to 

180,000 samples increasing in steps of 20,000 more 

training samples from the NISTSD19 dataset.  

The same process was followed for each 

augmentation layer developed using the same four 

randomization seeds to select the training data and 

generate the augmentation for the Streak, Droplet 

and Streak2O augmentations. CNN were trained for 

a maximum of 50 epochs with a patience of 10.  

The Streak and Droplet augmentation layers 

had two different configuration formats 1 and 2. 

The Streak2O augmentation had three 

configurations , where the first 

position indicates the configuration of its Streak 

component and the second position indicates the 

configuration for the Droplet, for a total of three 

configurations. 



RESULTS 

The results include data from 4566 evaluation 

data points. Figures 7 to 10 displays a comparison 

between the loss and accuracy achieved by neural 

networks trained using different augmentation 

procedures. 

 

 

Figure 7 

Loss at Best Epoch per Augmentation and Evaluation Noise 

 

 

Figure 8 

Loss at Last Epoch per Augmentation and Evaluation Noise 

CONCLUSION 

The Droplet algorithm showed only partial 

support in classification of samples under Streak 

noises. On other hand, Streak algorithm showed full 

support of Droplet noise. However, neither of them 

showed optimal support of the noise generated by 

the combine algorithm, Streak2O. 

Although, the Streak algorithm showed similar 

performance to the Streak2O against Droplet and 

Streak noises, the Streak2O augmentation showed 

better performance against the Streak2O noise. We 

can conclude that the two artifacts generated are in 

fact different to the combination of both, Streak2O, 

during training. Streak2O offer better noise 

handling performance than just using the Streak or 

the Droplet algorithms independently. 

 

 

Figure 9 

Accuracy at Best Epoch per Augmentation and Noise 

 

 

Figure 10 

Accuracy at Last Epoch per Augmentation and Noise 

 

All three augmentations show potential benefit 

in reducing overfitting in small datasets. These 

augmentations also show potential for the 

augmentation of synthetic data. They should help 

the neural network focus on relevant features and 

ignore degradation and mishandling artifacts in 

manuscripts and other physical handwritten media. 

It is important to note that one of the 

configurations of the Droplet algorithm (Droplet-1) 

showed significant lower performance than the 

control group against the control (Identity), the 

transformation noises, Rotation and Shear, and the 

CutOut noise tests. This configuration also affected 

the Streak2O-s1g1 that used the same configuration 

for the Droplet augmentation. The Droplet effect 

configuration may affect the training efforts. 



Future Work 

The Streak2O algorithm should be tested for 

incremental training against manuscript and 

synthetic data. Memory and execution optimization 

for large images could be implemented using 

Tensor masks. The base gradient texture used for 

Droplet algorithm could be enhance for realism. It 

would be interesting to see if Streak2O and CutOut 

augmentations can replace one another in terms of 

increasing overall performance. 
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