
Streak2O: Data Augmentation for Handwritten Text Recognition in Neural Networks

Eduardo J. Beltran Feliciano

Master of Computer Engineering – Digital Signal Processing

Dr. Marvi Teixeira

School of Electrical and Computer Engineering

Polytechnic University of Puerto Rico

Abstract ⎯ Streak2O is a machine learning data

augmentation algorithm based on the combination

of two other independent algorithms: Streak and

Droplet. These three augmentations are

implemented as non-trainable TensorFlow custom

Keras layers to optimize execution time in a GPU

based environment. They generate configurable

random artifacts that imitate real life handwritten

historical document or manuscript water damage

and document mishandling. Testing this

augmentation algorithm with small subsets of the

NIST-SD19 dataset on a convolutional neural

network architecture shows that they can help

reduce neural network overfitting falling partially

into the category of synthetic data generation.

Key Terms ⎯ Handwritten Text Recognition,

Machine Learning, Synthetic Data Augmentation,

TensorFlow.

INTRODUCTION

One of the most widely studied problems in the

field of pattern recognition and computer vision is

optical character recognition (OCR) [1].

Handwriting Text Recognition (HTR) is a sub field

of OCR that relates to detecting and classifying

non-mechanized characters, those written with ink,

graphite, or other substances over a physical media.

HTR imposes its own challenges including

segmentation, style variation by writer, irregular

spacing and orientation, usage of non-standard

symbols, and noise caused by degradation and

mishandling [2][3].

An increase computational power and new

tools for the usage of machine learning (ML)

algorithms have influenced the way OCR and HTR

are handled. Traditional approaches split the HTR

problem into two main parts, segmentation, and

classification [4][5]. It is important to distinguish

online and offline recognition. “In online

recognition a time series of coordinates,

representing the movement of the pen-tip, is

captured, while in the offline case only an image of

the text is available” [6]. M. Liwicki, et. al. [7]

captured life features from the users such as tracing

speed that are not available when working with

documents.

Semantic segmentation [8] and image

classification [9][10] have shown promising results

with the usage of convolutional neural networks

(CNN) and deep CNN (DCNN). Each of these

processes is equivalent to the two-step classic

processing of HTR, segmentation and classification.

This opens the possibility of designing an end-to-

end neural network that can perform both tasks. Shi,

et. al. [11] have a proposal for such an end-to-end

DCNN applied to scene text recognition. Long

Short-Term Memory (LSTM) units are commonly

combined into the newer ML neural networks used

for HTR as they can help classify by using the

sequential appearance of features extracted by prior

convolutional layers [1]. Namysl and Konya

proposed using bidirectional LSTM units to achieve

better results and indicate that Google's open-

source Tesseract engine makes use of a similar

neural architecture [1].

In image classification, augmentation

algorithms are routinely utilized to enrich image

data sets. Augmentation has two main purposes,

generating synthetic data to enrich small data sets

and to reduce overfitting over the training data.

TensorFlow [12] and MATLAB [13] offer built-in

tools for implementing common image

augmentations such as rotation, horizontal or

vertical reflection, scaling, translation, and shearing.

Literature offers additional augmentation methods

useful for image classification [14][15][16].

CutOut is an augmentation technique that

replaces a squared block in of the image with a

constant colored or Gaussian pattern. CutOut

showed varied improvement in validation accuracy

for image classification depending on the size of

the cutout region. This technique has the benefit of

not being computationally intensive and therefore

allowing it to be in-line with the neural network

training [14].

“CopyPairing is a mixture of Copyout and

SamplePairing"[16]. Copyout is an enhancement of

CutOut, proposed by P. May, that replaces a square

area from an image with a square area from a

different image of the data set. SamplePairing,

proposed by Inoue, uses an image of averaged

colors from two images of the same class to train

the network [15]. CopyPairing, proposed by May,

mixes Copyout and SamplePairing augmentation

techniques in alternating schedules during training.

The result is a lower error rate against the test data.

May theorizes that the imperfect sampling provided

by these augmentations allows the neural network

to focus on relevant features and distinguish them

from misguiding details [16].

In general, the modified samples used for

training are generally considered a type of synthetic

data. For OCR and HTR, it is possible to generate

synthetic data that is not based on a previous data

set. Jaderber, et. al. [17] and Ahmad, et. al. [18]

generated training samples by using different

computer font typefaces that are then process by

multiple random transformations. Ahmad, et. al.

evaluated different type faces individually on its

word recognition rate (WRR) against real world test

samples and later trained with combined typefaces

which reached a higher WRR.

DEVELOPMENT OF IMAGE

AUGMENTATIONS

Development of the text image data

augmentation algorithms follow a four-step process.

A MATLAB proof of concept for both the Streak

and Droplet augmentations was followed by three

stages that focused on making the algorithms more

efficient while combined with the TensorFlow

Sequential [12].

The first development outside of MATLAB

was performed under python using the CuPy [19]

library as it offers an API for GPU accelerated

operations based on the Nvidia CUDA library. The

Streak and Droplet algorithms offered very good

speed while using the CuPy library. However, when

combined with TensorFlow and Keras this version

of the code had two main problems.

Firstly, the CuPy library could not deliver its

arrays located in the GPU directly to the

TensorFlow model. CuPy arrays had to be send

back to CPU/RAM as NumPy arrays that could

then be accepted by the Keras ImageDataGenerator

object and then back into the model as Tensor

objects. Transmission of data from CPU memory to

GPU memory greatly slowed the training during

model fit.

Secondly, as the CuPy library takes over part

of the GPU memory, this memory becomes

inaccessible to the TensorFlow Library. In fact, the

CuPy library had to be loaded first or TensorFlow

would take possession of the GPU's RAM, as

desired to allow training of larger models and

batches, and the CuPy library would not load.

The similarities between CuPy and NumPy

allowed the transition of the code from GPU

execution to CPU execution quite easily. This new

code working in the CPU made inaccessible the

parallelism capabilities offered by the multiple

GPU cores. However, by removing the conflicts

between the libraries and reducing data

transmission between CPU memory and GPU

memory, the algorithm developed on top of the

NumPy library running exclusively in CPU proofed

faster for model training.

The last two approaches to the development of

this algorithms considered inserting the

augmentation as a prepossessing function within

the keras ImageDataGenerator object. This object

already offers common data augmentation

procedures such as flip, rotation, shift, zoom,

brightness, and shear.

A TensorFlow custom layer would insert the

augmentation stage as the first layer of the model.

These layers are not trained as they perform

random transformations on the input data. They can

be activated and deactivated randomly, selectively

or by schedule by combining their usage with

custom callback functions. They offer increase

speed by utilizing the tensor object operation

parallelism.

Previous image augmentation methods have

shown to increase classification accuracy for object

detection [14][15][16]. However, unlike the

augmentations in this document, those

augmentations do not translate directly to real

examples of image degradation for handwritten

documents or historical manuscripts. The

augmentation effects proposed and developed in

this project intend to imitate real world patterns

found in water damaged manuscripts [2][3].

DESCRIPTION OF ALGORITHMS

The algorithms developed here are inspired in

real world artifacts, that physical media may

develop due to mishandling or environmental

effects. The algorithms' objective is to generate

realistic synthetic data or augment small datasets.

Ink and Floating-Point Operations

The algorithms developed consider the text

over a background as pool of ink with different

concentrations. Due to this any image received by

the algorithm needs to be transformed into a

floating-point value range from 0 to 1 where 0

represents background and 1 represents text as

shown in Figure 1.

The original MATLAB and early Numpy

algorithm could only handle grayscale images, but

the current Numpy and the TensorFlow algorithms

can work with single channel or three channel

images. To achieve realistic artifacts in the

augmented images, the algorithm may need to work

with the image negative to appropriately map ink.

Figure 2 displays the artifacts generated when

failing to invert colors on the right compared to the

default behavior on the left.

Figure 1

Single Channel Ink Mapping

Figure 2

Examples of Droplet and Streak Augmentation

During the MATLAB proof of concept, the

original images where initially cleaned simply by a

low pass filter to affect only relevant text ink, but

this proved to remove artifacts from the original

source that gave the image variability and realism.

Finally, the algorithm used a K-means algorithm to

classify the image pixels and determine which

image regions represented ink. This K-means

approach allowed the image to retain its original

artifacts. When the algorithm was moved to CuPy

and then to NumPy the same steps were followed

by using the K-means algorithms offered by

OpenCV.

The text mask produced from the the K-means

algorithm was a float valued mask. After initial

erosion, the values masked where set to a full mask

with value of 1.0. The mask is then dilated further

than the original size and given a mask value of 0.5.

This produced a mask with a contour gradient

which avoided hard lined effects on the execution

of the augmentation, producing color boundaries on

the limits of a hard-set mask. Preferably the

contours would follow a multi-step gradient, but the

0.5 contour produced realistic effects. This float

valued mask was multiplied against the original

image to capture the inked areas.

Proof of Concept

The first iteration of the Streak augmentation

was both highly iterative and recursive. The Streak

augmentation proposed uses a K-means (n=2)

algorithm to classify pixels between ink and

background as described earlier. The mask

generated was used to first take a random percent of

the ink recursively at different steps of the

predetermined path and leave a trace of the taken

ink in the direction of the path, observe Figure 3. It

intends to imitate the effect of an object displacing

ink along the surface of the text as would happen

with fresh ink or pencil graphite.

After obtaining the K-means mask, it was

multiplied pixel by pixel against the input to extract

the ink of the affected area. The matrix of the ink

inside the mask is called the take. This take was

constructed from the extraction achieved by

combining the K-means mask with a circular region

mask created from a parametric distance calculation.

The take is then partially dropped along a path of

pixels living a trace of ink. If the path was too long

the iteration extracted ink from further steps along

the path until the end of the path was reached.

Figure 3

Example of Streak Augmentation

To avoid concentrating the ink at the end of the

path, the midway extractions and tracing of the ink

had to be performed before the original. This meant

that the initial take, and path calculation had to stay

in memory waiting to be used until all its children’s

iterations were performed, this version of the Streak

augmentation was a recursive function. To maintain

efficiency the next step of the recursion only

happens after δ×R pixels along the path, where R

was the radius used to calculate the parametric

distance, the radius of the regional mask, and δ is

configurable fractional multiple, 0.5 by default. In

this sense approximately L÷(δ×R) steps for L the

length of the path, and R and δ as previously

defined.

Current TensorFlow implementation does not

perform mid-path operations. By using the translate

function from TensorFlow Addons [12] it can

follow paths on any angle. The MATLAB and

NumPy algorithms were limited to pixel size shifts

to perform efficient translation. With the

TensorFlow Addon translate function, batch

translations of stacked gradients can be translated in

different directions, and to different distances. Two

loops in the previous iterations became a single

loop with parallel computing that allowed

movement in more flexible angles. Although this

improves speed of execution, eliminating the

double loop also limits the capacity of recursive

execution, as each execution occupies Lmax×B

times the size of a single input, where Lmax is the

configurable max length of a streak and B is the

batch size during training.

TensorFlow Noise Handling

Custom TensorFlow Keras layers fall in two

main categories: dynamic and non-dynamic.

Dynamic layers allow for a broader set of control

mechanics where the developer can intermingle

python logic with TensorFlow logic. Dynamic

layers however cannot be executed using eager

execution [12] as eager execution prohibit python

logic to access values from the CPU during run-

time. Although disabling Eager Execution allows

development of tools using python logical

operations it also slows down execution due to the

communication between the CPU RAM and video

memory in the GPU.

Non-dynamic custom layers can run under

eager execution but cannot make use of non-

TensorFlow logic as memory exchanges between

CPU and GPU are restricted. Non-dynamic layers

variables are stored in tensor arrays or tensor

constants which restricts the type of operations that

can be performed against the data. Non-dynamic

custom layers proofed to be much faster both

during training and during evaluation making them

the preferable development environment for any

real-world implementation.

Figure 4

Example of Streak Augmentation

Due to execution constrains of the TensorFlow

eager execution, predictable loop size, the K-means

approach was abandoned. The noise handling

algorithm for the non-dynamic layers also maps

input values into a float range from 0 to 1. This

algorithm clips the values to a random value

between a fourth and a third of each channel

average (the average color), as seen in Figure 4.

The values below the threshold are kept in memory

to be reintroduced into the image. The values

clipped above the threshold are passed to the

augmentation algorithm that generates a modified

output. After

The noise is reintroduced to the output after the

augmentation algorithm to preserve any artifacts

present in the lower valued pixels of the original

image. This clipping approach allowed parallel

execution between batch images within the

TensorFlow eager execution environment.

Previous image augmentation methods have

shown to increase classification accuracy for object

detection [14][15][16]. However, these methods do

not translate directly to real examples of image

degradation for handwritten documents. The

augmentation effects proposed in this project intend

to imitate real world patterns found in water

damaged manuscripts. Although initial design into

this effect considered parametric, iterative, and

recursive operations, during design recursive

execution was exchanged by iterative operations

that could be translated into matrix operations and

therefore TensorFlow layers.

TensorFlow Memory Requirements

The memory requirements of the TensorFlow

implementations are predictable. The Streak

augmentation, and therefore the Streak2O

augmentation, memory increases at a cubic rate of

the max length. In particular if we assume that the

max length is linearly related to one of the inputs

dimensions, for example

where and are the dimensions of the input

size and σ is a constant ratio, then assuming the two

dimensional input has fixed aspect ratio, if

, the image becomes times wider

with the same aspect ratio, the augmentation will

require k³ more memory to execute.

Observe that, given the above, if we define

memory requirements as

where is the memory required by a single pixel

then:

 (1)

 (2)

It should be possible to reduce memory

requirements by restricting to a multiple of

average character height instead of the image size.

Droplet Augmentation

The Droplet augmentation proposed also uses a

K-means (n=2) masking algorithm to detect ink

areas. It generates a circular gradient effect around

a center point with a color density equivalent to the

display color density removed from the masked text.

Figure 5 displays this effect on the right side.

Figure 5

Example of Streak Augmentation

The Droplet Augmentation was designed to

imitate the effects of water on ink text on paper.

The idea is that ink diluted by water drops tends to

form a darker ring at the end of the water flow

through and on top the paper. The original

MATLAB and NumPy algorithms only differ from

the TensorFlow algorithm in terms of the noise

removal procedure. However, with the parallelism

used in the new TensorFlow Streak algorithm, the

Droplet Augmentation was enhanced to combine

multiple gradients into an irregular gradient that

could be used to create shapes other than a single

circular region. The custom layer accepts an

additional argument during build called repetitions

that sets the number of circular regions to combine.

Unlike the Streak augmentation, the repetition

argument need not be configured in terms of the

input size and should only cause lineal increments

in memory requirements, instead of the exponential

growth from the Streak length as shown in

Equation 1.

Streak Augmentation

Figure 5 left side displays an earlier version of

the Streak augmentation which had not yet

implemented any form of masking mechanism.

This earlier implementation affected the

background color. By using masking, the alternate

version shown in Figure 6 avoided generating the

previous circular background artifact.

Figure 6

Streak Augmentation using a Mask

Data Sets

The NIST Special Database 19 (NIST-SD19)

[20] is compose of samples of 62 categorized

characters and symbols. The dataset offers a special

organization for these categories under the

‘by_merge’ directory, where upper- and lower-case

symbols that cannot be distinguished are integrated

into a single category during training. The dataset

offers non-grayscale, black and white handwritten

characters over a noiseless white background.

The ICDAR 2017[21], from the International

Conference on Document Analysis and Recognition,

is composed of historical manuscripts. ICDAR

2017 was used to test the realism of the artifacts

generated on actual documents and achieve results

like the ones observed in examples such as seen in

previous research [2][3].

Streak2O Augmentation

Streak2O is a combination of both the Streak

and the Droplet augmentations performed in

sequence, in that order. It therefore would share

memory requirements and configurations with both

augmentations.

DESCRIPTION OF TENSORFLOW LIBRARY

TensorFlow Layers

The final augmentation algorithms designed

may run both in and out a TensorFlow eager

environment. They are all based on a custom layer

called activateLayer that allows interaction with

callbacks for TensorFlow custom control. Current

TensorFlow implementations do not trigger

callback events between batches during eager

execution. Due to this limitation, TensorFlow

Variables used to control the flow of execution can

only be updated at the start or end of an epoch by

custom callbacks.

responsiveLayer

The responsiveLayer is the base layer that

includes functionality to interact with the

activateLayer callback to include flow control

during training and evaluation.

Parameter usage for the responsiveLayer can

be found in Table 1. This layer class also includes

methods required to interact with the activateLayer

callback: activate, deactivate, activate_out_of_-

training, deactivate_out_of_training, and operation.

Table 1

Parameters of responsiveLayer constructor

Parameter Description

dtype Sets the data type for the Tensor objects inside a

layer.

batch_size Required as it is not necessarily given by a

previous layer as part of the build method.]

dynamic If false allows the layer to be used in

TensorFlow eager execution.

trainable Defaults to False. Augmentation layers are not

expected to learn weights during training.

name Defaults to “identity”. This layer is meant to be

a parent class for augmentation layers.

kwargs Accepts other named parameters.

The activate and deactivate methods are used

to control the augmentation during training. The

activate_out_of_training and deactivate_out_of_-

training are used to control the augmentation during

evaluation and testing.

The streakLayer inherits behavior from respon-

siveLayer. This class creates a non-trainable layer

that performs a random streak on each image in the

batch. The streaks positions, sizes and directions

are randomized and not shared between images of

the same batch.

It can be customized using the parameters in

Table 2. Parameters shared with the responsive-

Layer behave as previously described.

Table 2

Parameters of streakLayer constructor

Parameter Description

seed Sets a randomization seed to allow repeatable

behavior if desired.

negative If True(default), do nothing, else inverts input

before and after augmentation.

distance

multiplier

Represents what percent of the smallest side's

length should be considered the maximum

length of a streak over the image.

radius

multiplier

This multiplier allows customization of average

radius or the initial take that defaults to half the

length of the smallest side.

height

limits

A tuple that defaults to (0.2, 0.8). Boundaries in

percent for the vertical initial center of the

effect in respect to the image.

width

limits

A tuple that defaults to (0.1, 0.7). Boundaries in

percent for the horizontal initial center of the

effect in respect to the image.

ink percent A tuple that defaults to (0.8, 0.95). Boundaries

of the random percent amount of ink removed

from the initial position.

The dropletLayer inherits behavior from

respon-siveLayer. This class creates a non-trainable

layer that performs one or more random droplets on

each image in the batch. The droplets positions and

sizes are randomized and not shared between

images of the same batch.

The dropletLayer can be customized using the

parameters in Table 3. Parameters shared with the

previous layers behave as previously described.

The streak2OLayer inherits behavior from

responsiveLayer and includes one instance of each

previous augmentation, streakLayer and

dropletLayer. This class creates a non-trainable

layer that performs a streak and one or more

random droplets on each image in the batch. The

positions, sizes and directions of the augmentations

are randomized and not shared between images of

the same batch.

The parameters of the streak2OLayer have all

been covered as part of the parameters for the

responsiveLayer, the streakLayer and the

dropletLayer. Parameters with the prefixes

‘streak_’ and ‘grad_’ refer to the streakLayer and

the dropletLayer components of the streak2OLayer,

respectively.

Table 3

Parameters of streakLayer constructor

Parameter Description

repetitions Sets the number of droplets to draw on each

image. Defaults to 15.

radius

multiplier

This multiplier allows customization of average

radius or the initial take that defaults to a third

of the length of the smallest side.

TensorFlow Custom Callbacks

The activateLayer callback used in junction

with custom layers, derived from responsiveLayer,

to conditionally activate or deactivate the

augmentation at epoch begin. Allows configuring

an initial number of epochs of training without the

augmentation active. The callback can also follow a

pattern of n epochs with the layer active followed

by m epochs with the layer deactivated. The

‘sleep_init_epochs’ is an integer valued parameter

that maintains an augmentation layer inactive for a

given number of epochs at the start of training. The

‘sleep_wake_pattern’ is an iterable of two integer

values parameter that describes a pattern of number

of alternating active and inactive epoch lengths.

The captureObservations callback is derived

from keras base Callback class. It was designed as a

low computational cost alternative to the

TensorBoard callback that captures a great set of

information during model training. The callback

has triggers in three training events: “on_-

train_begin”, “on_train_end”, “on_epoch_end.” It

references the best validation accuracy to keep a

copy of the best model weights and can trigger a

training early stop after a set number of consecutive

epochs finishes without better accuracy or loss. The

model also tracks loss and validation data across

epochs to populate the database and keeps backup

of best epoch and checkpoint epoch weights.

NEURAL NETWORK DESIGN

The code developed for this project includes a

customize builder of Simoyan, K. and Zisserman, A.

like models [10]. Their architecture proposes using

multiple convolutional layers with small receptive

field in sequence to simulate a larger receptive field.

The model builder receives four tuples that describe

the number of convolutional sets, if a convolutional

set has an extra padding convolutional layer, if

dropout will be used after a max-pooling, and the

number of dense layers used before finishing with

an argmax activation. These tuples also specify the

number of filters for each convolutional set and the

number of nodes in the dense layers.

Current training is using less convolutional

layers and more dense layers to construct a system

more prone to overfitting to test if the augmentation

layers can delay this occurrence.

TRAINING AND TESTING AUGMENTATION

Evaluating Augmentation

To test the efficacy of the new augmentation

methods we will use a control group where training

will not include any type of augmentation using

four predefined randomization seeds to create and

feed 9 different train sample sizes from 20,000 to

180,000 samples increasing in steps of 20,000 more

training samples from the NISTSD19 dataset.

The same process was followed for each

augmentation layer developed using the same four

randomization seeds to select the training data and

generate the augmentation for the Streak, Droplet

and Streak2O augmentations. CNN were trained for

a maximum of 50 epochs with a patience of 10.

The Streak and Droplet augmentation layers

had two different configuration formats 1 and 2.

The Streak2O augmentation had three

configurations , where the first

position indicates the configuration of its Streak

component and the second position indicates the

configuration for the Droplet, for a total of three

configurations.

RESULTS

The results include data from 4566 evaluation

data points. Figures 7 to 10 displays a comparison

between the loss and accuracy achieved by neural

networks trained using different augmentation

procedures.

Figure 7

Loss at Best Epoch per Augmentation and Evaluation Noise

Figure 8

Loss at Last Epoch per Augmentation and Evaluation Noise

CONCLUSION

The Droplet algorithm showed only partial

support in classification of samples under Streak

noises. On other hand, Streak algorithm showed full

support of Droplet noise. However, neither of them

showed optimal support of the noise generated by

the combine algorithm, Streak2O.

Although, the Streak algorithm showed similar

performance to the Streak2O against Droplet and

Streak noises, the Streak2O augmentation showed

better performance against the Streak2O noise. We

can conclude that the two artifacts generated are in

fact different to the combination of both, Streak2O,

during training. Streak2O offer better noise

handling performance than just using the Streak or

the Droplet algorithms independently.

Figure 9

Accuracy at Best Epoch per Augmentation and Noise

Figure 10

Accuracy at Last Epoch per Augmentation and Noise

All three augmentations show potential benefit

in reducing overfitting in small datasets. These

augmentations also show potential for the

augmentation of synthetic data. They should help

the neural network focus on relevant features and

ignore degradation and mishandling artifacts in

manuscripts and other physical handwritten media.

It is important to note that one of the

configurations of the Droplet algorithm (Droplet-1)

showed significant lower performance than the

control group against the control (Identity), the

transformation noises, Rotation and Shear, and the

CutOut noise tests. This configuration also affected

the Streak2O-s1g1 that used the same configuration

for the Droplet augmentation. The Droplet effect

configuration may affect the training efforts.

Future Work

The Streak2O algorithm should be tested for

incremental training against manuscript and

synthetic data. Memory and execution optimization

for large images could be implemented using

Tensor masks. The base gradient texture used for

Droplet algorithm could be enhance for realism. It

would be interesting to see if Streak2O and CutOut

augmentations can replace one another in terms of

increasing overall performance.

REFERENCES

[1] M. Namysl and I. Konya, “Efficient, Lexicon-Free OCR

using Deep Learning,” 2019. [Online]. Available:

https://arxiv.org/abs/1906.01969. [Accessed: February 15,

2020].

[2] V. Rouchon, M. Desroches, V. Duplat, M. Letouzey, and J.

Stordiau-Pallot, “Methods of aqueous treatments: the last

resort for badly damaged iron gall ink manuscripts,”

Journal of Paper Conservation: IADA reports =

Mitteilungen der IADA, vol. 13, no. 3, pp. 7–13, 2012.

[3] C. Carşote, P. Budrugeac, R. Decheva, N. S. Haralampiev,

L. Miu, and E. Badea, “Characterization of a byzantine

manuscript by infrared spectroscopy and thermal analysis,”

Revue Roumaine de Chimie, vol. 59, no. 6-7, pp. 429–436,

2014.

[4] M. Maheshwari, D. Namdev, and S. Maheshwari, “A

Systematic Review of Automation in Handwritten

Character Recognition,” International Journal of Applied

Engineering Research, vol. 13, no. 10, pp. 8090–8099,

2018.

[5] L. R. Schomaker, “Retrieval of handwritten lines in

historical documents,” Proceedings of the International

Conference on Document Analysis and Recognition,

ICDAR, vol. 2, no. June, pp. 594–598, 2007.

[6] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H.

Bunke, and J. Schmidhuber, “A novel connectionist system

for unconstrained handwriting recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol. 31, no. 5, pp. 855–868, May 2009.]

[7] M. Liwicki, A. Graves, H. Bunke, and J. Schmidhuber, “A

Novel Approach to On-Line Handwriting Recognition

Based on Bidirectional Long Short-Term Memory

Networks,” in Proc. 9th Int. Conf. on Document Analysis

and Recognition, 2007.

[8] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille, “DeepLab: Semantic Image Segmentation

with Deep Convolutional Nets, Atrous Convolution, and

Fully Connected CRFs,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–

848, 2018.

[9] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column

deep neural networks for image classification,”

Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, no. February,

pp. 3642–3649, 2012.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional

networks for large-scale image recognition,” 3rd

International Conference on Learning Representations,

ICLR 2015 - Conference Track Proceedings, pp. 1–14,

2015.

[11] B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable

Neural Network for Image-Based Sequence Recognition

and Its Application to Scene Text Recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence,

vol. 39, no. 11, pp. 2298–2304, 2017.

[12] A. Martıń et al. “{TensorFlow}: Large-Scale Machine

Learning on Heterogeneous Systems,” Preliminary White

Papers, 2015.

[13] M. H. Beale, M. T. Hagan, and H. B. Demuth, Deep

Learning Toolbox™ Reference, r2019b ed. The

MathWorks, Inc, 2019.

[14] T. DeVries and G. W. Taylor, “Improved Regularization of

Convolutional Neural Networks with Cutout,” 2017.

[Online]. Available: https://arxiv.org/abs/1708.04552.

[Accessed: October, 2019].

[15] H. Inoue, “Data Augmentation by Pairing Samples for

Images Classification,” 2018. [Online]. Available:

https://arxiv.org/pdf/1801.02929.pdf. [Accessed: March 13,

2020].

[16] P. May, “Improved Image Augmentation for Convolutional

Neural Networks by Copyout and CopyPairing,” 2019.

[Online]. Available: https://arxiv.org/pdf/1909.00390.pdf.

[Accessed: October, 2019].

[17] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman,

“Synthetic Data and Artificial Neural Networks for Natural

Scene Text Recognition,” 2014. [Online] Available:

https://arxiv.org/pdf/1406.2227.pdf. [Accessed: October,

2019].

[18] I. Ahmad and G. A. Fink, “Training an Arabic handwriting

recognizer without a handwritten training data set,”

Proceedings of the International Conference on Document

Analysis and Recognition, ICDAR, vol. 2015 Novem, pp.

476–480, 2015.

[19] C. R. Harris et al. “Array programming with NumPy,”

Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020.

[Online]. Available: https://doi.org/10.1038/s41586-020-

2649-2. [Accessed: November, 2019]

https://arxiv.org/abs/1906.01969
https://arxiv.org/abs/1708.04552
https://arxiv.org/pdf/1801.02929.pdf
https://arxiv.org/pdf/1909.00390.pdf
https://arxiv.org/pdf/1406.2227.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

[20] P. J. Grother and K. K. Hanaoka, “NIST Special Database

19 - Handprinted Forms and Characters Database,” pp. 1–

30, 2016. [Online]. Available:

https://s3.amazonaws.com/nist-

srd/SD19/1stEditionUserGuide.pdf%oAhttps://www.nist.g

ov/srd/nist-special-database-19. [Accessed: February,

2020].

[21] A. Fornes, et al. “Proceedings of the International

Conference on Document Analysis and Recognition,

ICDAR, vol. 1, pp. 1389–1394, 2017.

https://s3.amazonaws.com/nist-srd/SD19/1stEditionUserGuide.pdf%25oAhttps:/www.nist.gov/srd/nist-special-database-19
https://s3.amazonaws.com/nist-srd/SD19/1stEditionUserGuide.pdf%25oAhttps:/www.nist.gov/srd/nist-special-database-19
https://s3.amazonaws.com/nist-srd/SD19/1stEditionUserGuide.pdf%25oAhttps:/www.nist.gov/srd/nist-special-database-19

