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The study of electrolyte solutions poses several interesting features and 
challenges. Their study is important, not only theoretically but for practical 
reasons. Transport processes occur within the body as ionic exchanges in 
solutions. The measurement of chemical and thermodynamic properties of 
electrolyte solutions is important for the success of many industrial processes. 
These and other reasons have contributed to make the study of electrolyte 
solutions an active research area in physics and electrochemistry. Their study 
is complicated because we must consider several kinds of interactions when 
we try to describe their properties: solvent-solvent interactions, present in the 
study of pure liquids, plus the ion-solvent and ion-ion interactions that appear 
due to the presence of the dissociated ions. 

The first attempts to find theories that worked for liquids tried to use 
existing theories of the gaseous phase, considering the differences in density 
between the two states. As an example, let us take the equation for the 
pressure of a gas, which can be written as a power series about the number 
density, 

P p  =  P  +  B 2 ( T )  p 2  +  B 3 ( D  P 3  +  •  •  •  ( 1 )  

where p stands for pressure, P = (^B  -D 1 » is the Boltzmann constant, T 
is the temperature, and p is the number density. ^(T) are the virial 
coefficients; integral expressions that depend only on the temperature. The 
^(T) take into consideration the interactions between the gas particles, 
grouping them as interactions between particle pairs, trios, etc. which, in 
theory, are more tractable than the original N-body problem of the system as 
a whole. The first term in the expansion gives us the ideal gas law, which is 
valid for real gases if conditions of high temperature and/or low densities are 
available and little or no interactions exist between the gas particles. When 
we try to use this equation for electrolytes, the integrals of the ^ (T) do not 
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converge. This is because the interactions between particles do not allow us 
to divide them into small group interactions as before. In 1950, Mayer1 was 
able to end the convergence problems of the virial expansion by rearranging 
the divergent terms in such a way that allowed convergence of the series. He 
proved there is a one-to-one correspondence between gas and liquid equations 
for dilute solutions and the applicability of the formalism of the former into 
the latter. This work established the basis of modern theories for electrolyte 
solutions. 

The interactions among the various components of a solution are difficult 
to account for. One of the models used for electrolytes calls for taking the 
total potential energy UN (r) of our N-body system as pair-wise additive, 

Wr- fJ  = £  uj f )  (2) 

where 

u j f )  = ^ • K®(r) (3) 

uHS(r) ^ the hard sphere potential. When we assume that our system is 
made up of hard spheres with the charges of each ion at their centers and that 
these spheres are immersed in a continuum dielectric, this model is referred 
to as the primitive model (PM) of electrolytes. When all the ions have equal 
sizes the model is known as the restricted primitive model (RPM). 

The information on the structure of single electrolytes with ions of species 
i and j can be given by the radial distribution function (RDF), gt(r), between 
two ions of species s and t respectively. The RDF is written as a Boltzmann 
factor, exp[-/3 WH (y;f)], where WN (s;t) is the potential of mean force for 
an ion of type t due to a set of N ions with a central ion of type s. As we 
approach conditions of infinite dilution, WN - UN . When this condition is 
met, all the thermodynamic quantities can be obtained in terms of g.t(r), at 
least theoretical!/ . Experimental &t (r) can be obtained, allowing us to check 
our theoretical results. 

Several theoretical models have been presented to study the physical 
properties of dilute electrolyte solutions. The oldest approach used in these 
studies is the Poisson-Boltzmann (PB) theory. Its goal is to find an 
expression for the mean electrostatic potential W and, from there, the 
expressions ort e esired thermodynamic quantities. The general expression 
or the PB equation can be found by using Poisson's equation for a reference 

ion or type s, 
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vyr(r) = - ±L qt(r), r > aa , s,t = (ij) (4) 

e is the dielectric constant of the solution, a_t is distance of closest approach 
for ions of different type, and q (r) is the charge density present at a distance 
r from the central ion s, represented by 

<?/r) = E Pr«r^r) (5) 
r 

q and pt are the charge and mean number density of ions of type t, and g.t(r) 
is the RDF of s,t ions. The ion of type s is centered at r=0. When we write 
the general expression for the RDF in Eq.(5), and substitute it in Eq.(4) we 
get 

^ •,(*) = - — E P t e t  exP["P WJfM r>a a  (6) 
z t 

Taking the potential of mean force WN(s;t) equal to the mean electrostatic 
potential energy, qV>s (r), we get the Poisson-Boltzmann equation, 

V2 t/r) = - — E P t e t  exPt-P e, Vs(r)], r>aa (7) 
c t 

Debye and Huckef proposed this approximation as a first step taken to solve 
Eq.(4). They would then linearize the exponent of Eq.(7), keeping terms up 
to first order in ^>s(r). The resulting equation can be regrouped, 

V t,(r) = - — E P, «. fl " P e< 
8 f 

= + — T,  p .J  *,fr) 
c t 

because the term E Pt ei cancels due to the condition of 
c t 

electroneutrality. Defining K 2  = —E Pr which is now known as the 

® i 
Debye-Huckel screening length, we get an equation that can be easily solved 
using traditional techniques for second order differential equations, 

V *,(/•) = K2 *,(/•) ff) 

The linearization of Eq.(7) is performed to correct an inconsistency of the PB 
gjt(r): when the ions have different valences and/or ionic radii, fet(r)£gs(r)-
This restricts the usefulness of the model to study unequal ion sized systems. 

With the introduction of integral equation methods to study electrolyte 
solutions, the PB equation was set aside. These methods gave a more 
detailed view of the ionic distribution around reference ions. There are still 
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good reasons to work with the PB theory: it is relatively simple to solve 
numerically, and it gives a useful firstN description of the structure and 
thermodynamics of RPM systems of univalent ions. Christopher Outhwaite3,4 

has proposed a solution method which drops the need of the linearization 
process by using a symmetric g.t (r) 

gjr) = eowg exp[(^) (e, Hr,(r) + t, V,(r))] (9) 

where 9(r-^t) is the Heaviside (unit step) function. Substituting Eq.(9) in 
Poisson's equation (Eq.(4)), we obtain an expression that will depend on the 
central ion and the region where we are testing it. This corrects the 
inconsistency of the g.t (r) and allows us to work in the bulk solution of 
dilute electrolytes. 

In my master's thesis, I worked with my advisor, Dr. Lutful B. Bhuiyan, 
in a study of the PB equation using a symmetric expression of the RDF. We 
calculated the values of the osmotic coefficients and mean activity coefficients 
for dilute electrolyte solutions. The ions studied had different radii and 
electric valences. The thermodynamic properties already mentioned were 
calculated through three different methods: virial, compressibility, and energy. 
The virial approach uses the virial expansion available for dilute solutions. 
The "compressibility" route takes its name from the use of the compressibility 
equation of state? to calculate the pressure of the system; and the "energy" 
route s name comes from the use of the internal energy of the system to 
calculate the Helmholtz free energy and, through it, the pressure. The results 
obtained from these three routes would be consistent only if the RDF is 
exact; any inconsistencies found will be a measure of the inaccuracy in the 
predicted g-t (r) s of the PB equation. Studies on thermodynamic consistency 
had been performed on several other theories, but Outhwaite had recently 
mentioned that it had not been done for the PB equation . 

The thesis research had two main parts. First, we worked on the solution 
of the PB equation for a single electrolyte using Outhwaite's expression for a 
symmetric RDF. During the second part of the research we worked with the 
linearization of the PB equation using Outhwaite's expression for the RDF 
and comparing it with the known results of Debye and Huckel, and the 
nonlinear results. The resulting analytical expressions were evaluated using 
the method3 described for the first section. For the main work of the thesis, 
we found the expressions that described our ionic solution with the modified 
version of the PB equation. These were solved using a quasilinearization 
method after writing them in non-dimensional form. When we got the 
expressions for the g.t(r) of the system, the equations for the virial, 
compressibility, and energy equations of the thermodynamic properties were 
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checked and compared for consistency. The ionic systems studied were of 
equal ionic sizes with electric valences of 1:1, 1:2, 1:3, and 2:2. For 
unequal ion sizes 2:1 and 3:1 systems were studied too. We found that, for 
RPM systems, the full thermodynamic consistency (virial, compressibility, and 
energy) is limited to 1:1 electrolytes at very dilute concentrations. The 
consistency between only the virial and compressibility routes can be traced 
for 1:1 systems to higher concentrations. Consistency between those two 
routes decreases for the other systems considered in the following order: 1:2, 
1:3, and 2:2, where 2:2 had the worst consistency results. For PM systems, the 
consistency between virial and compressibility routes again is best for 1:1 
systems, and decreases in the following order: 1:2/2:1,1:3/3:1, and 2:2. The 
virial route shows the best agreement with integral equation results, the 
energy route was not consistent with the other two routes nor with other 
methods of calculation. 

During the two years of our numerical research we received both 
encouragement and advice from Dr. C. Outhwaite through private 
communications. A paper was published by the three of us (Martinez, 
Bhuiyan, and Outhwaite)in the Journal of the Chemical Society , Faraday 
Transactions ; (a publication of the Royal Society of Chemistry). 
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