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This project explored the use of Distributed Machine

Learning (DML) as a potential tool in training times of Machine

Learning (ML) models in lower-end computer clusters. To provide

alternatives for students and scientists when implementing their

ML environment without expensive/performant hardware. As part of

this, an ML training environment was developed and deployed

using container technology on a raspberry pi (RPI) computer

cluster. This cluster was used to train ML classifier models

over the popular CIFAR10 dataset image dataset. When producing

models' different configurations were used on the cluster to

vary the number of nodes and processor cores used during

training to analyze the behavior of training times for models in

a distributed and non-distributed environment.

Results & AnalysisMethodology

Introduction

For this project, an environment for training machine

learning models with the functionality to scale up or down with

relative ease was successfully created. This system was used to

examine the performance of an RPI cluster in training classifier

models over the CIFAR10 dataset. By observing training times

produced by the test cases, it was found that in general, models

produced using a distributed approach were trained in less time

than models trained with an undistributed approach.

Additionally, when examining the effect of adding additional

cores to the system without the added complexity of adding

additional nodes it was found that this could result in greater

speedup values when adding the equivalent processing power of an

additional node to the system. It is apparent that training

machine learning models was feasible in an RPI. Although

examining recovered data it was observed that training time

could not be reduced indefinitely by adding additional nodes to

the cluster, due to diminishing returns. For this

implementation, the max practical number of RPI that could be

used in the cluster was found to be from 4 to 5. Since RPI are

not traditionally designed to have their hardware be upgraded,

this creates a hard limit for workloads able to be run on RPI

clusters.

Conclusion

Future Work

Acknowledgements

References

The biggest difficulties involved with this project

revolved around the hardware limitations of the individual

Rasberry Pi computers. This resulted in slower development and

testing times for the project. When selecting the tools and

software used in this project the focus was placed on tools that

were simple to implement and allowed for faster prototyping this

came at the consequence of using tools that require more

processing power to operate in comparison to more lightweight

tools. Future work would include a revision of the code used to

implement more lightweight software and reduce the number of

tools used such as docker to analyze the impact on this could

have on training times. Additionally, alternate datasets and

types of machine learning problems should be tested to verify

the results across different machine learning algorithms.

This work is supported by, or in part by, the DoD

Cybersecurity Scholarship Program (CySP) under grant # H98230-

20-1-0355. Special thanks are extended to Dr. Alfredo Cruz,

Ph.D. of the Polytechnic University of Puerto for his extended

supervision, guidance, and patience throughout this project.

For this project, a system or environment was required which

would allow to quickly train and test machine learning models not only

in a single host machine but to also be distributed through multiple

hosts. The developed environment consists of a combination of tools

and code. The system leveraged container technology to package the

source code and dependencies into deployable packages (docker

images/containers). This included the code for two ML learning

algorithms, one used for traditional ML and one for DML. These

executable packages could be deployed to the Raspberry Pi cluster (as

shown in Figures 2 & 3) using available container orchestration tools.

The deployment process was modified when running different test

cases. This was accomplished through the creation of configuration

files that could be used to define various constraints for containers

as they were executed. A separate configuration file was required for

each test case, varying 1 to 3 Nodes and 1 to 6 of available

processors. One node of the cluster was always reserved to act as the

master node which handled coordination when using multiple nodes.

Figure 5  Ordered Training and Work Times for simulated environment on x64 

PC system. 

From the results, various trends regarding the recollected

data could be seen. First, training times for models in a

distributed environment outpaced training times for the non-

distributed tests. When using three worker nodes for example the

models were trained 2.64 times faster than training in a single RPI

using traditional methods.

Using additional nodes for test cases was not without

consequences, when using multiple nodes in test cases the amount of

overhead observed when training models increased with the number of

nodes used. Extrapolating from observed data clusters with higher

than 5 nodes would result in more time spent coordinating nodes than

actually performing work when training a model. Reducing the

potential benefit of adding additional nodes.

A similar pattern can be seen when comparing speedup values

from test cases where the number of nodes varied and those where the

node count remain constant, but the core count varied. In the later

speedup, values showed diminishing returns meanwhile in the former

speedup values for adding additional cores grew steadily as they

were added.

Problem

Usually, when working with any nontrivial machine learning

application, a significant amount of data is required. Machine

learning models are valued depending on how accurately they can

complete the task, and it is generally the case that models

trained with higher amounts of data tend to be more accurate.

Although many factors are also involved in this, a significant

amount of data is needed to be processed to pursue better and

more accurate models. This results in a rise of the necessary

processing power required to train models in a reasonable amount

of time. There are two possible ways to approach this scaling

problem. The first is to perform vertical scaling. The classic

example of this is adding programmable GPUs to a host system [1,

2]. The second way this can be approached is by scaling

horizontally. This is where distributed machine learning systems

come in; these are systems and algorithms designed to take

advantage of multiple computer nodes to process workloads faster

than traditional machine learning strategies. This project had

the purpose of viewing how distributed machine learning can be

leveraged to allow lower-end devices to be used to complete

nontrivial machine learning tasks. This was explored by

developing a training environment/system to be used for training

machine learning models. This system was used to perform various

tests on a microcomputer cluster consisting of 4 Raspberry Pi

computer nodes. These tests consisted of training machine

learning models as classifiers on the popular CIFAR10 image

dataset. This dataset consists of 60000 32x32 color images of

one of ten possible classes.

The system allowed different configurations to train

models on the CIFAR10 test data with a varying number of nodes

in the cluster and the number of processor cores used on each

host processor. These values were varied to view the impact on

performance. The unique combination of these served as the

different tests conducted in the project.

Figure 2: Visualization of source code deployed on Raspberry Pi Cluster. 

Figure 1: Sample of data of CIFAR10 dataset[3].

Current literature and research suggest that there are

speed benefits to training models in a distributed machine

learning environment [4], thus this poses the question of

whether this reduction can be leveraged to extend the possible

use cases for training models in lower-end computer clusters

such as those made of Rasberry Pi computers. What are the

practical limitations of running distributed machine learning

environment for a Raspberry Pi computer cluster? How do training

times for models behave on such a cluster when adding additional

nodes to the cluster. How do training times behave when

increasing the amount of processing power in the cluster.

Figure 3: Visualization of packaging source code for deployment on Raspberry 

Pi Cluster. 

Figure 4: Visualization of modifying deployment parameters for packages through 

compose files. 

Figure 8: Image of Raspberry Pi Cluster used in project. 

Figure 7: Visualization of recorded speedup values when varying the node count 

used in training models vs speedup values observed when increasing equivalent 

core counts in a constant three node configuration. 
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Figure 5: Training times and recorded overhead for training models varying 

the allowed node count in the cluster.  


