
Techniques for Functional and Structural Testing of Software

Alfredo Cat:, PhD
Associate Professor
Department of Electrical Engineering
Polytechnic University
email: across@coqui.net

Adridn E. Mdcide:
Graduate Student
Polytechnic University
email: ainendez@pitpi.edu

ABSTRACT

This work trill present the structural and
functional approaches as software testing process
techniques. The software testing process is one that
consumes at least half of the labor expended to
produce a ii’orkiug program. Also, the cost of
testing critical software can he three to five times
as uuich as the cost of all the other activities
combined. For those reasons the development of
techniques to test a program in order to rechece
time and cost becomes necessary. Sonic of the
techniques of the structural and the fundamental
approaches will be studied here as well as the
comparison of two of their techniques: the
boundary test and the path test, with their
extensions: the boundary worst case and the branch
and statement test.

SINOPSIS

En este trabajo se presentardn los enfoques
estrttctural v funcional como tecnicas puma el
proceso dc prueha c/c piogramnas c/c computadoras
a “software testing “. Este proceso generabuente
consume al menos Ia mitad del esfiterzo realizado
para producir un programa vera: v fidedigno.
Ademds el costo c/c prueba de un pi-ogramna de
fsuiciOn critica puede 5cr (IC tres a cinco I’eces el
costa total c/c toclas las demcis actividades
combinadas. Par esta macOn el desarrollo de
técnicas pam el proceso de prueba son necesarias
tonto coma pam reducir el tienipo de prueha como
el costa c/c realizarlas. Se estudiaromi algunas
técnicas del eufoque fimcional comno lo son Ia
prueba de Ilmites v Ice prueba (IC ecjuivalencias coil
a/gil ‘las dc sits variantes. Tamnhicn se estudiardn
algunas técnicas del eufbque estructural coma lo es
Ia prueba c/c pasos con algunas de sus variantes Ice
prueba por declaración v Ice prueha par cohertura
de retinas.

I- INTRODUCTION

The main limitation of softwaie testing is that,
in order to prove that a program is 100% free of
bugs, the testing should be very exhaustive and
thorough. Exhaustive and thoroughly testing will
not only take a lot of time in research and testing
but also a lot of resources and money. Exhaustive
testing requires the execution of every statement in
the program and every possible path combination
through the program. In practice. this is
impossible. There are an infinite number of path
combinations as each sequence of ioop execution
represents a separate path. Testing must be based
on a sub-set of possible test cases and a good
choice of the test data. In an exhaustive Lest of an
integer addition algorithm, the test case would
include approximately 264 test execution, assuming
that integers are stored in 32 bits. For a computer
that performs 224 operations per second, it will take
24u seconds or approximately 35,000 years to
complete an exhaustive test of the addition
algorithm.

Approximately 65% of all bugs can be caught
in unit testing which the path testing method
dominates. Path testing catches approximately half
of all bugs caught during unit testing or
approximately 35% of all bugs [I]. When path
testing is combined with other methods such as
limit checks on loops, the percentage of bugs
caught rises from 50% to 60% in unit testing. Path
testing is more effective for unstructured than for
structured software [2j.

A- 845w NOTATIOIVAND DEFJNn’Io,vs

Because testing technology has evolved over
decades, some of the terms can be confusing. Some
of the these terms are:

Definition 1: Error - An error is a non-expected
mistake. It usually means that the software does

Deceeecdte /999 ~eoüta We &. ~tea’aa~aW Po&t&~ca We ~cte~to ~deo 33



not do what the requirements document describes,
or that the system is not working properly. When
the programmer(s) make this “mistake” while
coding, we refer to the “mistake(s)” as bug(s).

Definition 2: Fault - The defect that is found as the
result of an error is called a fault. Basically, faults
fall in two categories:

Fault of commission - Occurs when we enter
something into a representation that is incorrect.

Fault of omission - Occurs when we fail to enter
correct information.

Definition 3: Failure - A failure is an occurrence
of an error somewhere in the software system, it
occurs when a fault executes.

Definition 4: Incident - An incident is the
symptoms associated with a failure that alerts the
user of an occurrence of a failure.

B- THE GOAL OF SOFTWARE TESTING

The goal of software testing is not to make
100% error free programs, which may be almost
impossible and also have several consequences, but
to establish the presence of defects in a program in
order to identify and correct or debug the defect.
Debugging usually follows testing, but they differ
in respect to goals, methods, and most important,
psychology [2]. Testing is finding the existence of
errors and debugging is finding the cause of the
errors and correcting them.

II- SOFTWARE TESTING FUNDAMENTAL
APPROACHES

To identify the test case the programmers have
two fundamental approaches: functional testing and
structural testing. Each of these approaches has
several distinct test case identification methods,
commonly called testing methods.

III- FUNCTIONAL TESTING

In the functional testing approach, the program
or system is treated as a Black Box. Only inputs
and outputs are taken in consideration by the tester
when testing and evaluating the program or system.
In this approach, the tester considers the program to
be tested like a function that maps values from its
input domain to values in its output range.

This type of testing attempts to find errors
provoked by incorrect or missing functions,

interface errors, errors in data structure or external
database access, performance errors, and
initialization and termination errors. The most
important advantages offered by functional testing
are that it is independent of how the software is
implemented and that the test case development can
occur in parallel with the implementation.

The negative side of this approach, since the
functional method is based on a specific behavior,
is that it cannot identify behaviors that are not
specified.

One of the mainline approaches of functional
testing will be examined next.

A- THE ANGLE PROBLEM SOLVER

An example of a problem to determine the
angle of a function of the two variables S and R is
presented to analyze the Black Box testing method.
The function is as follows:

S
0=—

R
where 0 is the angle in radians, S is the arc length
of a circle and R is the radius of the circle.

Next, we can determine the final quadrant of
the angle described by the function shown above.
The possible output of the program should be one
of the four quadrants described by the coordinate
axis of x andy. The final position of a point will be
determined by the function 0. The definition of a
quadrant would be the angle between the range:

Quadrant I =0<Ql <90,
Quadrant 2 = 90< Q2 < 180,
Quadrant 3 = 180 <Q3 <270,
Quadrant 4 = 270 <Q4 < 360

The values for S and R would be restricted to
values from 1 to 20. The code of the program
implemented in C language is as follows:

/ Program that determines the quadrant of a given
angle determined by a function of two variables */

pi=3.141593
variables r, s, angle, refangle;

if (s.c=20 && r’c=20 ~& s>0 && r>0) {
angle—((s/r) *(~9Q/p~);
while (angle>360)

refangle angle - 360;
/“give to angle a value in
range from 0 to 360 “/

if (angle>0 && angle<90)
printf (‘In First quadrant’);

else
if(angle>90 && angle<180)

printf (‘in Second quadrant”);
else

34 Reuc~ta &r ~cãe74/S4uI Pc&Wcg4a a Paet~ Rcco V~sudtc /999



Table 1: Test Case for the Boiuidarv Testif (angle> 180 && anglec27Q)
printf (“tn Third quadrant”);

else
if (angle>270 && anglec36Q)

printf (‘in Fourth quadrant’);
else

7” End of the program “7

printf (“In Quadrant axis”);

B- BOUNDARY VALUE TESTING

Boundary value analysis focuses on the
boundaries of the input space to identify test cases.
The rationale behind boundary value testing is that
errors tend to occur near the extreme values of an
input variable. The U.S. Army (CECOM) made a
study of its software and found that a surprising
portion of faults turned out to be boundary value
faults. Loop conditions, for example, may test for
<when they should be tested for <= , and counters
are “off by one”.

The basic idea behind boundary value analysis
is as follows: the use of input variables at their
minimum, just below their minimum, a nominal
value just below their maximum and their
maximum. These values are referred to as mm,
min+, nom, max-, and max+. This convention will
be used for this study.

The next part of boundary value analysis is
based on a critical assumption known as the “single
fault” assumption in reliability theory. This
assumption says that failures are rarely the result of
the simultaneous occurrence of two or more faults.

To consider the number of variables in a
function of n variables, it is necessary to set one
variable at the nominal value. The remaining
variables are set to the mm, min+, nom, max- and
max values. This process should be repeated for
each variable of the function. Thus, the boundary
value analysis for a function of n variables yields
4n + I test cases. For our example of angle
problem of a function of two variables (S and R),
the boundary test would produce 4(2) + I = 9 test
cases. The test cases for the angle problem are
shown in Table 1.

The boundary value analysis test cases for the
function F of two variables are:

(<x~ x,,,,1~ >, <x Darn’ ~ <x1 sum’

~ <x ,~,,,‘, x,01~~>, <x
< x ma+, x, fl~~fl>, <x no,,”, x2,,0,,,>, <x fl~5\”~

<x1 x2,,0,,,> }

C- WORST CASE TESTING

Worst case testing is another extension of
boundary analysis. It follows the same

generalization and has the same limitation. The
main difference between each analysis is in the
number of test cases produced for testing the
software.

The number of test cases produced would be in
a function F of n number of variable equal to S~. In
general, the result is that a larger number of test
cases would be produced. The test cases are the
Cartesian product of the input variable defined for
the mi min+, nom, max- and max values.

For the angle problem of two variable, the test
cases produced would be 52 = 25 test cases. These
test cases are shown in Table 2.

Worst case testing is clearly more thorough in
the sense that boundary value analysis test case is a
proper subset of worst
the assertion when

S R Expected Output

Sn , Rmin 7 First Quadrant

Sn , Rmin+ 7 2 Third Quadrant

Sn ,Rn 7 7 First Quadrant

Sn, Rmax- 7 19 First Quadrant

Sn , R,nax 7 20 First Quadrant

5mm , Rn I 7 First Qttadrant

Smin+, Rn 2 7 First Quadrant

Smax- , Rn 19 7 Sccond Quadrant

Smax , Rn 20 7 Secottd Quadrant

case testing. It is easy to see
comparing the test cases

Table 2: Worst Cases

S R Expected Output

5mm , Rn,in I I First Quadrant

5mm , Rmin+ I 2 First Quadrant

Sniin. Rmax- I 19 First Quadrant

5mm, Rmax I 20 First Quadrant

Smin+, Rniin 2 I Sccond Qt,adrant

Sniin+, Rn,in+ 2 2 First Quadrant

Smin+, Rnmx- 2 I 9 First Quadrant

Stnin+, Rniax 2 20 First Quadrant

Smax-, Rmin 19 I First Quadrant

S max—, R,ain+ I 9 2 Third Qttadrant

Smax-, Rmax- 19 19 First Quadrant

Smax—, Rniax 19 20 First Quadrant

Smax, Rmin 20 I First Quadrant

Smax, Rmin+ 20 2 Third Quadrant

Smax, Rmax- 20 19 First Quadrant

Sn,ax, Rmax 20 20 First Quadrant

x2,,5,,,>,

Vicat,uthe /999 Reoia de Ca ?&ioewaIad Po&r&.aa de ~e 35



produced by each boundary approach: Boundary
Value test cases = 9 and Wo,~st Case test cases = 25.

Note that the Worst Case test will give the same
test cases produced by the Boundary Value test cases
and those produced by the Cartesian product of the
input variable.

Probably the best application for worst case
testing is where physical variables have numerous
interactions and when the failure of the function
represents a high cost.

As with any other technique, the boundary
value analysis offers some limitations. These
limitations are not only related with the variable
type, but also when the variables are not
independent and do not represent bounded physical
quantities. The boundary analysis test case is
derived from the extreme of bounded, independent
variables that refer to physical quantities, with no
consideration of the nature of the function nor the
semantic meaning of the variable.

D- EQUIVALENCE CLAss TESTING

The idea of equivalence class testing is to
identify test cases by using one element from each
equivalence class. If the equivalence classes are
chosen wisely, the potential redundancy among test
cases is greatly reduced.

An equivalence relation is a relation that
satisfies the reflexive, transitive and symmetric
properties. An example of an equivalence relation
is the numerical equality. An equivalence class
relation occurs when a set of objects satisfies an
equivalence relation. The significance of this
concept is that we can relate an object from one
class to any other object of that class. The idea
behind this concept is to make partition of the input
space so that every object in each subset of the
partition is equivalent. Then, if any object of the
partition is tested, we can assume that each member
of the same partition would respond in the same
form as the object tested. This methodology is
known as equivalence partitioning.

The equivalence class then helps to select a
small subset of possible inputs and make a well-
selected test case. The test case produced obeys
the characteristics described by the following

statements [4]:

- It reduces, by more than a count of one, the
number of other test cases that must be
developed to achieve some predefined goal of
“reasonable testing”.

2- It covers a large set of other possible test cases.
That is, it tell us something about the presence

or absence of errors over and above the
specific set of input values [4].

This process of test case design proceeds in
two steps: identifying the equivalence classes and
defining the test cases. To identify the equivalence
class each input condition must be taken and
partitioned in two or more groups. As an example
of variable inputs we can identify two types of
equivalence classes; valid equivalence classes or
the valid inputs to the program, and the invalid
equivalence classes, which are all other possible
erroneous input values.

In the process of identifying the test cases, a
unique number has to be assigned to each
equivalence class as shown in Example I and
Example 2. All valid equivalence classes must be
covered by test cases; it is also necessary to make
as many test cases as possible for the uncovered
valid equivalence classes.

In the same way, all invalid equivalence class
have been covered by test cases, but for the
uncovered invalid equivalence class only one test
case is written. This helps to reduce the number of
test cases and avoids some program error failures.

As an example of equivalence class testing, the
angle problem and some of the different approaches
to derive the test cases will be considered.

Example 1: Traditional Equivalence C/ass (Eq. C.)

External condition Valid Eq.C. Invalid Eq.C.

0<5<21(I) 5<1(3)

S and R should be S > 20 (4)

0<S,R<21 0<R<2l(2) R<1(5)

R > 20 (6)

Example 2: Uncovered Valid Output

First Quadrant (7)

Second Quadrant (8)

possible outputs Third Quadrant (9)

Fourth Quadrant (10)

Axis Quadrant (11)

Note that the number of test cases is the sum of
each equivalence class (which equals II)

Table 3 shows the test cases derived [4] as
described at the beginning of this section. Notice
that some equivalencies are repeated. This does not
necessarily means or represents the same
equivalence class.

36 Revarg at, Z,aeut~,t,d PoàWcga.. a Paez~s’ a V~rndw /999



The Output Range Equivalence classes are
equivalencies defined from the output range. This
gives some sense that the test is exercising
important parts of the program. The test cases for
the angle problem is shown in table 4:

Test cases S R Expected output

Tec I 7 7 First Quadrant
Tec 2 7 7 First Quadi-ant
Tec 3 0 7 Error Msg.
Tec4 21 7 Error Msg.
TecS 7 0 ErrorMsg.
Tec 6 7 2 I ElTor Msg.

Tec 7 7 7 Fi,-st Quadrant

Tec 8 l9 7 Second Quadrant

Tec 9 7 2 Third Quadrant

Tec 10 15 3 Fourth Quadrant

Tec I I 1.570798 I Axis Quadrant

Table 4: Output Range Equivalence Cases

Test Cases S R Expected Output

OUT 1 7 7 First Quadrant
OUT2 19 7 Second Quadrant
OUT 3 7 2 Third Quadrant
OUT 4 15 3 Fourth Quadrant
OUT 5 1.570798 I Axis Quadrant

IV- STRUCTURAL TESTING

The other fundamental approach is
Structural Testing, sometimes called White Box. In
structural testing, the test object is viewed as an
open box where the internal structure and logic are
completely familiar to the programmer. The
programmer then can look at the implementation
details in a programming style, controlling methods
and coding details. This allows the tester to
identify test cases based on how a function is
actually implemented.

A- PATH TESTING

Path testing is the name given to a family of
test techniques based on judiciously selecting a set
of test paths through a program [I). If the set of
paths is properly chosen, then we have reached
some measure of test thoroughness.

Three different testing strategies out of
potentially infinite family of strategies are:

Statement testing— Every statement in the program
is executed at least once under some testing, as
denoted by C1 [I]. For decision statements like IF-
THEN-ELSE, we could execute just one decision
alternative and satisfy the statement coverage
criterion. One weakness of statement testing is that
there is no guarantee that all outcomes of branches
are properly tested. This is the weakest criterion in
the path testing family.

The table 5 shows the statement test cases
derived for the angle problem.

Branch testing — For every decision point in the
program, each branch alternative is exercised at
least once under some test, as denoted by C2. For
decision statements like IF-THEN and IF-THEN-
ELSE statements, both true and false branches have
to be covered. The table 5 shows the cases derived.
Note that the number of test cases is reduced to
two.

The starting point for path testing is a program
flow graph. A flow graph consists of nodes
representing decisions and edges showing flow
control. The path through the programs are the
sequence of instructions or statements that start at
an entry, junction or decision and end at another,
possibly the same junction, decision or exit.

Figure 1 shows a flow graph for the angle
problem. Note that the flowchart represents each
statement in the program, while the flow graph only
represents the decision statements of the program.
Each decision statement is represented by nodes
(circles) and the possible paths are represented by
the arrow lines.

The number of instructions or statements
executed along the path measures the length of the
path. The assumption of this approach is that
something has gone wrong with the software that
makes it take a different path than the intended.

B- STRUCTURAL TESTING FOR
THE ANGLE PROBLEM

For the angle problem, let’s see some of the test
cases derived for the statements and branch test
using Figure 1.

I- Statement test (Ci):

Table 5: Statement Cases

S R Path Expected output

0 7 1,2,3,16 ErrorMsg.

I .5707 I 1, 2, 4, 5, 6, 7, 9, Axis Quadrant
II, 13, 15, 16

Table 3: Traditional Equivalence Cases

the

Vick4ndw 1fl9 Reoej4, We Ca táetdaCad Po&~.rea We P€a a 37



Note that in table 5, for values of S = 1.5707
and R = 1 all decisions are covered for at least one
alternative.

2- Btiinch Coverage (C2)

Table 6: Branch Coverage Cases

Expected
S R Path Output

Error
7 0 1,2,3,16 Message

1,2,4,5, Axis
1.5707 1 6, 7, 9, 1 1~ Quadrant

13, 15,_16
1,2,4,5, First

~ 1 6,8, 15, 16 Quadrant

1,2,4,5, Second
19 7 6,7, 10, Quadrant

15, 16
1,2,4,5, Third

7 2 6,7,9, 12, Quadrant
15, 16

1,2,4,5,6, Fourth
15 3 7,9, IL Quadrant

14, 15,_16

These test cases shown on table 6 give a major
sense of branch coveiage as it verifies each

outcome, true or false, for each decision statement.
The larger number of test cases derived, compared
with the statement derived test cases, gives a better
sense of proving or testing.

This structural approach has several
limitations. The number of unique logic path
through a program is astronomically large.
Exhaustive path testing means a complete test, that
is, every path in a program could be tested yet the
program might still be loaded with errors. This
could have a dead end or path that the test case
cannot reach.

Nevertheless, it is important to remember that
the predicted result for a path test is the path itself,
not the output of the program or function.

V.. CONCLUSIONS

Because of the combinational explosion,
neither exhaustive testing to specifIcations (Black
Box) nor testing to code (White Box) is feasible. A
compromise is needed, using techniques that will
highlight as many faults as possible, accepting that
there is no way to guarantee that all faults have
been detected. A reasonable way to proceed is to
use black-box test cases first (testing to
specifications) and then develop additional test
cases using white-box techniques (testing to code).

There is no controversy between structural
versus functional tests: both are useful, both have
limitations, but each target different kinds of bugs.
Functional tests can, in principle, detect all bugs
but would take infinite time to do so. Structural
tests are inherently finite but cannot detect all
errors, even if completely executed. There is no
best methud, neither an approach is sufficient by
itself. Only a judicious combination will provide
the confidence of functional testing and the
measurement of structural testing.

VI- REFERENCES

I- Beizer, B. (1990). “Software Testing
Techniques”. ~ Edition. New York: Van
Nostrand Rheinold.

2- G. M. Weinberg 1971 , “The Psychology of
Computer Programming”

3- Boehm and et al. (1975). “Some Experience
With Automated Aids to the Design of Large-
scale Reliable Software”. In Proc. IEEE Trans.
Sofrwure Engineering, SE-b, 3, pp. 290-303.

4- Myers, G. J. (1979). “The Art of Software
Testing”. New York, Wiley Interscience.

5- Plfeeger, S.L. (1987) “Software Engineering”.
2”~ Edition. New York, Macmillian Publishing
Company.

Figure 1: Flow graph for the angle’s problem

38 ~euia de Ia %,a’aa~tad Pc&t&g/at de Pcectta ~ca Veaaud7e /999


