
A Forensic Memory Image Acquisition Protocol Based on Windows Memory Analysis

José R. de la Cruz Echeandía

Computer Engineering

Jeffrey Duffany, Ph.D.

Electrical and Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract  Computer Forensics has become an

extremely important evidence gathering and

analysis field in the modern electronic driven

world. Most of the evidence acquired, preserved,

processed and analyzed originates from long term

storage media. The importance of obtaining a

forensic memory image has grown in importance in

order to support the evidence analysis and obtain

correct and irrefutable results. This project has

developed a memory acquisition protocol that

provides forensic examiners with the necessary

tools to complete a comprehensive investigation.

The protocol developed, which is targeted at the

acquisition step of the evidence collection process,

is based on memory analysis. Including memory as

a data source empowers the analyst with context

information that can be used to enhance the

analysis of evidence extracted from long term

storage media.

Key Terms  Computer Forensics, Computer

Forensics Protocols, Digital Forensics, Memory

Analysis.

INTRODUCTION

Computer Forensics is defined by the National

Information Assurance glossary as “the practice of

gathering, retaining, and analyzing computer-

related data for investigative purposes in a manner

that maintains the integrity of the data.” [1] Since

long term data in computers is primarily stored in

magnetic disks, most forensic investigations are

based on such data. The acquisition of disk images

is now mature, and the protocols used are widely

accepted.

The Association of Chief Police Officers

(ACPO) has developed a document that describes

Good Practices for digital forensic investigations

[2]. This document details the fundamental

guidelines for the digital evidence collection

process. The procedures detailed in the ACPO’s

report have been generally accepted by the

international law enforcement community.

Summarizing the ACPO’s document, the Computer

Forensics process can be described as consisting of

six major steps:

1. Analyze the scene

2. Acquire the evidence

3. Preserve the evidence

4. Analyze the evidence

5. Report the findings

One of the principal motivations for this

project stems from a paper on Windows memory

analysis written by Jesse D. Kornblum [3]. It

describes a technique to reconstruct the state of a

computer from information carved out of a memory

image. Although Kornblum’s approach lies in the

analysis phase of the forensic process, it provided

much needed insight into the memory scenario.

This project is based on the second phase of the

process: evidence acquisition. In order to develop a

correct procedure to secure a memory image it was

important to understand how memory is used by the

operating system.

BACKGROUND

Computers follow the Von Neumann model [4]

in which all data and instructions reach the CPU

(Central Processing Unit) via busses that connect

the peripherals with the system’s physical memory.

This model is the current standard, and is depicted

in Figure 1. As a result, computer forensic

investigations have recently shifted to include

memory acquisition as part of the data acquisition

protocol. The main difficulty hindering the

acceptance of data attained from memory has been

the inability to attest the integrity of the data that

has been acquired from such a volatile medium.

Because a computer’s memory is subject to a high

rate of change, acquiring a forensic image has

proven to be a difficult task. This paper aims to

offer insight into this rapidly developing research

space by contributing a protocol based on memory

analysis.

Figure 1

The Von Neumann Model

MEMORY ANALYSIS

A digital computer performs work when the

CPU executes instructions. These instructions are

provided by the software applications invoked by

users to complete some task.

Software is developed using a programming

language, such as C or Java. The “plain English”

commands provided by the programmer are then

converted into machine readable instructions by

virtue of the compilation process. Once the

executable code is invoked by the computer, it is

loaded into the system’s memory by the operating

system. When a program is summoned to execute it

becomes a process. This process is handled by the

operating system, along with all other system

requirements, who acts as the doorman to the CPU.

When a process is invoked, the operating

system allocates sufficient memory space so as to

ensure that the process can execute all of the

instructions. The operating system then assigns a

priority to the process, and inserts it in the

appropriate queue. One of the main responsibilities

of the operating system is to ensure that the

memory space allocated to store the program’s data

is kept concurrent and separate from other

processes. The memory problem starts at this

instance.

Since modern programs can require a large

memory space to hold all data and instructions, the

operating system frequently “swaps” process blocks

in and out of memory in order to service all

processes which are waiting for a turn at the CPU.

The “swapped” processes are store in a reserved

area of the system’s main storage device, usually a

hard disk drive. This situation promotes a high

turnover of memory space allocation. It is very

possible for one process that takes a long time

(more than 10 seconds for instance) to execute to be

moved in and out of memory many times.

Since modern CPU’s operate at clock rates in

excess of 2 Gigahertz the rate of change in the

memory is very high. A Hertz is defined as the

amount of cycles that can be achieved in one

second, and a cycle in this context refers to the time

in seconds it takes for the clock to switch between

high and low. In a typical Windows machine, with

more than 40 processes in queue for execution, a

memory location can be reused more than 10 times

per second.

Therefore, the memory rate of change becomes

a concern when performing memory procurement

because when the acquisition process ends the data

recovered might be inconsistent. Notwithstanding,

the research performed shows that data collected

from memory images is sound and can be used to

provide extra context to the evidence gathered from

long term storage devices.

Windows Memory

As stated by Solomon and Russinovich in

Windows Internals [5], Windows divides the

memory in two parts: user space and system space.

The user space is where the processes invoked by

some software application are stored while they

await execution. The system space provides

temporary storage for operating system processes

and can be described as more stable. The system

area stores the operating system’s kernel, the

process page tables, and the system cache among

others. The data and processes stored in the system

area depend largely on the requirements of the

users-level processes in queue for processing.

Although Russinovich, et al, contend that some of

the system level regions are fixed, this largely

depends on the size of the memory itself. When the

memory is large enough to hold all required system

level processes the statement holds. But recent, and

continuous, security threats to operating systems

that target such fixed memory positions have given

rise to random boot time memory space allocation

in order to prevent adversaries to guess where these

extremely important system services are to be

located in memory.

In 32 bit systems, where addresses are formed

using 8 hexadecimal characters, Windows can

address 2
32

 – 1 address locations, which roughly

translates to 4 Gigabytes (exactly 4,294,967,295

bytes). Hence the operating system should be able

to secure 2 Gigabytes of memory space for the

system region, while the user-level address space is

left with the remaining 2 Gigabytes for its

processes. Dealing with 2 Gigabytes of space is no

small feat; hence most operating systems have

further logically divided the memory into a

construct known as pages. A page is generally 4

Kilobytes in size (exactly 4,096 bytes). This

division of memory allows the operating system to

reference process areas by page number. Therefore

if a process requires 5 Kilobytes of memory space,

2 pages must be allocated. This last scenario

describes why pages in memory are mostly

“blank”. But the same scenario presents an

opportunity to the forensic investigator by being

able to inspect data that was left behind from other

processes.

When a process is “swapped” to long term

storage the operating system does not “zero-out”

the newly available memory real estate. The

operating system transfers the data required to

perform the next process, “zeroing” out any excess

area not used on a per page basis. Therefore, and

with much frequency, some tables are unallocated

but contain data pertinent to the “swapped” process.

This scenario provides some of the context

mentioned at the beginning of this report. Because

the swap area is located in long term storage,

evidence stored in it can be obtained using ordinary

forensic techniques. Once the memory is collected,

these unallocated pages provide the forensic analyst

with supporting data which leads to a sounder

forensic analysis report.

To summarize this section, Windows allocates

memory area to user-level applications by assigning

enough space to hold all instructions and data in

units of memory pages and not single byte units.

Since pages are the logical memory unit in use, the

operating system is required to hold an index that

contains the page number where a process has been

allocated. This information is not usually collected

or required when analyzing hard disk drives, but

becomes an essential piece of information when

dealing with memory.

The Subject Computer

The subject computer is a Dell Latitude D800

laptop computer. It “runs” on Microsoft Windows

XP Professional, Service Pack 3. The CPU is an

Intel Pentium M processor with a published clock

rate of 1.5 Gigahertz. . It has a “C” partition that

stores all program and system data with a 37.2

Gigabyte (40,007,729,152 bytes) capacity

formatted using an NTFS (New Technology File

System) file system, as shown in Figure 2

Figure 2

Target System Disk Capacity

Although considered to be an “old” system,

this computer was specifically selected for its small

memory size. Although this limitation can cause an

increase in the memory rate of change, the images

acquired are smaller in size and promote better

analysis. The details of the CPU are shown in

Figure 3, which was produced using the CPU-Z

utility developed by CPUID.

Figure 3

CPU Details

The system features a 512 MB physical RAM

(Random Access Memory) memory capacity

(actually 536,535,040 bytes), which is ideal for the

research being conducted. Since most of the

analysis was performed by reading the data

captured from memory, the process was slow and

tedious. Sifting through millions of data-bytes was

enabled because of the system’s small memory

size.

ACQUISITION AND ANALYSIS TOOLS

In order to “disturb” the target system as little

as possible, the acquisition and analysis tools

selected were evaluated by two criteria: small

footprint and the capability to be launched from a

USB thumb drive. Some of the evaluated tools can

be described as software systems, while other as

mere utilities.

The preferred memory-image acquisition tool

was DumpIT, developed by Matthieu Suiche and

MoonSols [6]. This tool is extremely lightweight at

only 203 KB, and is capable of generating complete

physical memory “dumps” for 32 and 64 bit

computer systems. Other acquisition tools

considered were: Access Data’s FTK Imager Lite

[7], and Mandiant’s Memoryze [8] and Redline [9].

Although the aforementioned tools are excellent

forensic utensils, they tend to depend on the

manufacturer’s forensic “suite”, hence their

captures proved to be geared towards each system’s

underlying functionality. DumpIT, on the other

hand, is simply a memory acquisition tool with no

analysis system requirements or dependencies.

Once the physical memory was acquired, other

tools were used to provide even more supporting

data about the system at the time of inspection. The

Sysinternals Suite, developed by Mark Russinovich

and Bryce Cogswell [10], provided some very

useful utilities. The two selected were Process

Explorer [11] and TCP View [12]. Process Explorer

was launched immediately after the memory had

been captured in order to leverage its “save” utility.

This feature allows the investigator to view the

active processes when the utility was used. The

results are saved into a text file. TCP View, as the

name suggests, captures all TCP (Transfer Control

Protocol) network connections at the time when the

tool is invoked. The results are saved into a text file

for further review. All of the utilities used during

the acquisition process were launched from the

command prompt of the subject system.

Once the acquisition process is complete the

collected evidence can be analyzed. Two utilities

were used for this process: Access Data FTK

Imager Lite and X-Ways Software Technology’s

WinHex [13]. These two tools were used to view

the contents of the recovered memory image in

order to perform the required analysis.

It should be mentioned that several forensic

suites were considered. The main reason for not

using them was monetary cost. Those offering free

versions did not include any memory acquisition

utilities. Therefore, the use of complete forensic

software suites was discarded.

MEMORY IMAGE ANALYSIS

The image collection process was performed

several times in order to be able to view the

contents acquired. After collecting more than 20

images, a process was established. At a random

time of day, after the target system had been in use,

the USB drive containing the required tools was

inserted into the computer’s USB port. A command

prompt window was the opened, and the

investigator navigated to the thumb drive directory.

Once there the DumpIT application was executed

and the resulting image saved on the same USB

drive. The two Sysinternals tools were then called

upon, saving the results to a text file. No images

(pictures) of the process of this process were

produced in order to preserve as much system

evidence as possible.

The image was then viewed using both

WinHex and FTK Imager. The investigator sifted

through the memory contents, viewing the data in

hexadecimal as well as ASCII format. Figure 4

illustrates one of the memory images being viewed

with WinHex. It should be mentioned that analysis

of the images was never performed on the target

system. A similar view of the same file using FTK

Imager is shown in Figure 5.

Inspection of Figures 4 and 5 reveals that both

software applications are very similar; none is

better than the other. They both have option to view

the data as hexadecimal or text, and they both

identify the memory address in hexadecimal

format. Both tools also display the data 8 byte (64

bit) columns, two columns at a time (128 bit view).

The text representation shown in the images

corresponds to converting each byte into its

equivalent character using the extended ASCII

format. Therefore, a maximum of 16 characters can

be represented per line displayed.

In the images acquired, the first 8 MB of

memory space were “empty”, meaning that the only

data represented were all zeros. Some of the

acquired memory dumps did not contain any data

for the first 20,480 bytes of memory space. This

finding confirms the statements in [5]. Furthermore,

operating system information such as registry keys

and character encoding were found to be located at

the beginning of the data or the end. The samples

taken could not reveal a specific location used for

the same data. At the same time, when system data

was located at the beginning of the memory, user

data was found at the other extreme. Therefore it

can be stated that the operating system selects

memory positions randomly at boot time, and

separates the system from the user space

consistently. This process usually results in two

“halves”; the system half and the user half.

Figure 4

WinHex View

Figure 5

FTK Imager View

After the acquisition process had been

completed, the investigator compared the

information saved in the TCP View report with that

shown by using the same tool but at the target

system. The same procedure was used with the

Process Explorer tool. The findings confirm that the

data collected represents a correct and forensically

sound copy of the actual system parameters.

Other tests performed included launching the

Notepad application and writing the pangram “The

quick brown fox jumps over the lazy dog” to the

screen. With the application open, the memory

image was acquired. The system was the shut-down

and re-started. The process was then repeated,

acquiring a second image with similar system

parameters. Analysis of both images collected at

shows that although in both instances the text

written was located in memory, the memory

addresses were completely different. This test was

performed 10 more times during a period of one

week with the same result. Not once was the text

found at the same memory location in different

images. Albeit timing concerns where some system

processes might have been different at the exact

time of memory acquisition, it can be stated that the

operating system selects the memory address for

each process according to an algorithm determined

at boot time.

MEMORY ACQUISITION PROTOCOL

The Internet Engineering Task Force, IETF,

develops many of the standards used in modern

network communications. In RFC 3227 [14] the

Order of Volatility for forensic evidence collection

is defined. It states that the data to be acquired

should be in the following order:

 Registers, cache

 Routing table, ARP cache, process table, kernel

statistics, memory

 Temporary file systems

 Remote logging and monitoring data

 Physical configuration

 Archival media

The registers and cache are, at this time, “out

of reach” to the investigator. These two

components are part of the CPU and can only be

accessed by the operating system. The data

contained in these devices is also present in

memory, but matching memory contents to the

registers and cache is a task outside the scope of

this project. The second set of items in the list

includes memory and network connections

information. The research performed was directed

towards these evidence sources. The rest of the

items mentioned in the list are commonly acquired

using standard forensic methods. This research

project was set out to develop a forensically sound

memory acquisition protocol.

The phrase “forensically sound” can be defined

as evidence that can be determined to be correct

and unaltered. The main problem with a

forensically sound memory is the rate of change. As

explained earlier, the rate at which data is removed

and inserted into a computer’s memory exceeds the

collection capability rate. It is very possible to start

the collection process with a particular process

block in memory and for that same process to be

removed when the location it resides is acquired.

Nevertheless, many of these more volatile

processes are system utilities which should not be

considered as evidence. User space process

execution data collection should be the target for

any investigator. This data reveals information

about how the system was being used, rather than

what the system was doing. The most important

pieces of evidence that can be collected using

memory acquisition are:

 Network connection data, including IP

addresses and port numbers

 Active processes

 Encryption keys

 Page tables

To preserve their confidentiality, the keys used

to encrypt and decrypt confidential data are

themselves stored in an encrypted state. Once they

are required for use, the system is responsible for

obtaining the proper information in order to handle

the confidential data. These “plain text” keys are

then loaded into memory for their use. Memory

acquisition provides the necessary tools to locate

and identify these keys. The forensic examiner is

then given more supporting information to perform

the system analysis, being able to decipher

previously encrypted data found in long term

storage devices.

Page tables list the memory location of the

processes that are in queue for execution, or those

that are currently being executed. Since the

operating system frequently swaps process data into

the swap area of the long term storage device for

the system, these pages tables offer insight into the

last activities performed by the user at the

computer.

In order to collect the aforementioned evidence

items memory acquisition is required. But the

collection process must follow a strict order and

procedure for the collected data to be admitted as

evidence. This order of procedure the forensic

protocol developed as a result of this work.

The first order of business is to require a

common set of physical tools. USB ports are

present in most personal, laptop and business

computers. These connections points enable users

to rapidly transfer relevant data from disparate

sources using USB devices (commonly called

thumb drives). The ubiquity of USB ports and

devices makes it the perfect choice for the physical

medium that will contain the software utilities used

in the collection process and be the destination of

the acquired evidence.

The software tools required to perform the

acquisition must be intensely evaluated. As stated

earlier in this report, the utilities selected should be

lightweight such as to impose the minimum

disturbance possible to the target system. This

investigator has clearly stated the preferred tools to

be used, but the final choice remains an individual

decision of each forensic investigator. If the

forensic team uses X or Y forensic analysis

systems, it is recommended that they select

memory imaging tools that are closely coupled with

their analysis software.

Once the physical and software tools have been

selected the procedure followed must remain

consistent. The main problem with memory

acquisition is that the investigator only gets one

chance. Therefore physical and software tool

selection should be carried out in a controlled

environment and proper testing techniques used. As

memory is introduced into evidence in legal

procedures the courts will decide which tools are

best suited for the process.

The forensic protocol developed provides a

consistent procedure for obtaining forensically

sound memory images. If all investigators follow

the same protocol the process will be successful.

The Forensic Memory Image Acquisition Protocol

is now described.

Step 1: Photograph the computer system and the

room, or area of the room, where it is found. Make

sure that photographs of all actions performed on

the computer are also photographed.

Step 2: Annotate any special circumstances that

observed when the system was approach. These

include, but are not limited to, open applications,

peripheral devices attached to the system, and any

noticeable processes being executed.

Step 3: Do not shut-down the system, or unplug

any network cables.

Step 4: Insert the USB device into the system.

Step 5: Execute the memory acquisition software

utility from the USB drive and store the memory

image in the same device.

Step 6: Execute the Process Explorer (or similar)

utility and immediately after the tool has captured

the system’s state save the results in the USB drive.

Step 7: Execute the TCP View (or similar) utility

and immediately after the tool has captured the

system’s networking state save the results in the

USB drive.

Step 8: Execute any other non-invasive evidence

gathering utility, following the same procedure as

in Step 7.

Step 9: Safely remove the USB drive from the

system.

Step 10: Use the target system’s hibernation utility

instead of shutting it down. Hibernation preserves

the state of the computer at the time the process is

launched.

Step 11: Remove or disconnect network cables.

Step 12: Remove or disconnect power cables.

Step 13: Remove or disconnect all peripherals.

Step 14: Proceed with the accepted best practice for

removing the computer’s long term storage device,

usually a hard disk drive.

Protocol Discussion

Following this protocol preserves the data

contained in the computer system, and that in the

storage peripherals attached. The continuous

observance of this protocol will, hopefully, result in

its acceptance by courts of law and its widespread

use. The first two steps are part of the common

forensic evidence acquisition procedure, and as

such were not part of the investigation.

Step 3 states that the system should not be

shut-down, or powered-off. This step is critical for

the memory image acquisition process because at

the time memory is left without power its contents

become unstable due to the capacitive nature of the

circuits used. Without power the memory

acquisition process cannot be performed.

Steps 4 to 8 describe the order of procedures to

be performed. After the forensic collection medium

has been inserted into the system, it is of utmost

importance that the memory image be acquired

first. All other utilities employed, if any, should be

used to corroborate the data captured from memory.

Steps 9 through 14 describe the proper “shut-

down” procedure. When a Windows system is

placed in hibernation, the operating system saves

the state of the computer at that moment. Active

network connections are archived, as well as any

processes that are currently in queue. This

procedure is better than the normal “shut-down”

because the state of the computer is saved to the

hard disk drive. For Step 14, the investigator should

follow the pertinent best practice.

CONCLUSION

 The work described in this report was directed

at the development of the Forensic Memory Image

Acquisition Protocol. The analysis performed was

not aimed at locating different evidence items in the

memory images acquired, but instead meant to

validate the protocol developed. This Forensic

Memory Image Acquisition Protocol should be able

to withstand the analysis, and obtain the approval,

of the courts of law.

 Further research should be directed towards the

effectiveness of the protocol’s implementation. The

adaptation of the protocol by a large number of

forensic investigators is the only venue available to

“field test” its success. Many forensic software

suites are incorporating, or are in the process of

including, memory analysis utilities into their

packages. The effective collection of memory

images using the protocol described will most

likely result in better forensic analysis and enhances

the results of any investigation.

ACKNOWLEDGEMENT

 This material is based upon work supported by,

or in part by, the U. S. Army Research Laboratory

and the U. S. Army Research Office under

contract/grant number W911NF1110174.

REFERENCES

[1] Committee on National Security Systems (CNSS),

“National Information Assurance (IA) Glossary”, CNSS

Instruction No. 4009, 26 April 2010,

www.cnss.gov/Assets/pdf/cnssi_4009.pdf.pdf

[2] Association of Chief Police Officers, “Good Practice

Guide for Computer-Based Electronic Evidence”, 2011,

http://www.acpo.police.uk/ProfessionalPractice/Crime.asp

[3] Kornblum, J.D., “Using every part of the buffalo in

Windows memory analysis”, Digital Investigation,

Volume 4, Issue 1, March 2007, Pages 24–29

[4] von Neumann, J., “First Draft of a Report on the

EDVAC”, 1945, downloaded from the World Wide Web,

http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf

[5] Russinovich, M.E., et. al., “Microsoft Windows Internals”,

2005, Microsoft Press

[6] Suiche, M., “DumpIT”, MoonSols.com,

http://www.moonsols.com/ressources/

[7] AccessData, “FTK Imager Lite”, AccessData.com,

http://www.accessdata.com/support/product-downloads

[8] Mandiant Corporation, “Memoryze”, Mandiant.com,

http://www.mandiant.com/resources/download/memoryze

[9] Mandiant Corporation, “Redline”, Mandiant.com,

http://www.mandiant.com/resources/download/redline/

[10] Russinovich, M.E., et. al., “Windows Sysinternals”,

http://technet.microsoft.com/en-us/sysinternals

[11] Russinovich, M.E., et. al., “Process Explorer”,

http://technet.microsoft.com/en-us/sysinternals/bb896653

[12] Russinovich, M.E., et. al., “TCP View”,

http://technet.microsoft.com/en-us/sysinternals/bb897437

[13] X-Ways Software Technology AG, “WinHex”,

WinHex.com, http://winhex.com/winhex/

[14] Brezinski, D., et.al., “Guidelines for Evidence Collection

and Archiving”, Internet Engineering Task Force Network

Working Group, February 2002,

http://tools.ietf.org/html/rfc3227

