
Performance @ppraisal:

Using Empirical Data to Evaluate Job Performance

José A. Aponte-Lucena

Computer Engineering

Eduardo Sobrino, Ph.D.

Electrical Engineering Department

Polytechnic University of Puerto Rico

Abstract  The Performance @ppraisal is a three-

tier web application implemented in the U. S.

Probation Office for the District of Puerto Rico to

evaluate the job performance of their staff using

empirical data extracted from external data

sources. It was implemented using the Model-

View-Controller (MVC) design pattern in PHP.

The main objective is to present a robust software

design, and an implementation with source code

easy to understand and maintain. This publication

is presented as a Project in Internet Engineering of

the Polytechnic University of Puerto Rico.

Key Terms  Appraisal, Controller,

Evaluation, Model, MVC, MySQL, Performance,

PHP, View.

INTRODUCTION

The United States Probation Office for the

District of Puerto Rico requested a web application

to develop and apply policies and procedures to

evaluate their employees’ performance and to plan

their professional development. These procedures

must be applied consistently through the agency.

Online documentation will present guidelines

and best practices as guidance to the supervisor to

create the evaluation instrument, to assist them

when evaluating their employee’s job performance,

and to recommend a development plan based on the

evaluation results. In addition, employees can

consult this documentation when reviewing their

performance evaluations.

The objective of this publication is to present

technical details about the software design and

implementation of this web application. In

particular, we focus in all software design

principles used to create a robust web application,

easy to maintain, and applying the most up-to-date

technology to optimize software longevity.

PERFORMANCE @PPRAISAL

Performance @ppraisal is a three-tier web

application implemented in the U. S. Probation

Office for the District of Puerto Rico to evaluate the

job performance of their staff. The implementation

of this application is presented as a project in

Internet Engineering for the Polytechnic University

of Puerto Rico.

Empirical data obtained from external data

sources, such as: case management reports [1],

time and attendance records, and training history, is

preferred over more subjective criteria when

evaluating an employee’s job performance.

Finally, the appraisal ratings should be assigned in

a standard manner through the agency, regardless

of the supervisor scoring the evaluation questions.

The three-tier design was implemented using

the Model-View-Controller (MVC) design pattern

to separate the user interface (view) from the

business logic (controller) and the database

operations (model).

DESIGN AREAS

The first step of the software design process

was to identify the use cases for the Performance

@ppraisal application. Use Case specifications

were grouped by design area based on their

functionality.

To make the software design and source code

easier to understand for future maintenance, all

object classes, including controllers and views,

were grouped in packages a directory structure

corresponding to the following design areas used to

classify the use case specifications. See Figure 1

below for a Design Area Diagram.

Figure 1

Design Areas Diagram

 System Administration: Includes modules

for the System Administrator to maintain

global configuration parameters for the

Performance @ppraisal web application. In

particular, the implementation of role-based

security, to restrict system access to authorized

users only and to assign permission rights.

 Reporting: Contains modules to generate

reports to measure statistics, to meet deadlines,

and to obtain historical data of the Performance

@ppraisal web application.

 Assessment Administration: Comprises all

the modules to create the assessment

instrument – custom performance evaluation

questionnaires – and its components.

 Assessment Delivery: Stores modules for

supervisors to use the assessment instrument to

evaluate the job performance of their staff. It

also includes modules for employees to review

their performance evaluations.

 Development Plan: Contains modules for

supervisors to create a development plan for

their employees based on the results of their

job performance evaluation.

 Guidance: Includes modules to provide online

documentation about guidelines and best

practices to create the assessment instrument.

In addition, it provides documentation and

minimal criteria to the supervisor on how to

use the assessment instrument, and to the

employee to help them understand the criteria

used to evaluate their job performance.

Finally, it also provides recommendations for

the creation of a development plan based on

the job evaluation results.

See Figure 1 below for a Design Area

Diagram.

USE CASES

This section includes a detailed description of

each use case grouped by design area.

System Administration

The following use case specifications

implements the role-based system security:

 To Create a User Account: The System

Administrator creates a user account with login

credentials (User Id and Password), and assigns

it one of the following role-based permission

levels to access the Performance @ppraisal

web application: System Administrator,

Supervisor, or Employee.

 To Login: The Performance @ppraisal

System validates the login credentials against

the database. When the validation succeeds, it

creates a global session variable with the

User’s Name and Security-Role Permission.

After three failed login attempts, the

Performance @ppraisal system locks the user

account to avoid an intruder to guess the login

credentials of an authorized user.

 To Receive Login Information By E-mail:

Authorized users can request a copy of their

login credentials to be sent in an e-mail

message when they forget this information.

Reporting

 To Print a Report: The Supervisor can print

reports from the Performance @ppraisal

system to measure statistics, meet deadlines,

and obtain historical data. Job performance

statistics will help him / her to detect weak

areas in the staff performance in order to

provide remedial action such as additional

training. In a similar way, management can

identify employees with outstanding

performance evaluations in a particular area

that can help to train other staff in that area of

expertise. Deadline reports are useful to the

supervisor to schedule the job performance

reviews on time and to follow up on the

development plan actions.

Assessment Administration

The following use case specifications describe

how to create the aassessment instrument, the

performance evaluation questionnaire:

 To Create a Performance Appraisal Area:

All questions in a job performance evaluation

are grouped by appraisal area to make the

assessment instrument easier to understand. In

addition, by grouping the scores of questions in

the same appraisal area, the supervisor can

identify those areas where the employee

performance needs improvement.

 To Obtain Empirical Data from an External

Data Source: Web services are used to extract

empirical data from external data sources to be

used in the job performance evaluation, such

as: case management reports, time and

attendance records, and training history. The

web service connection parameters are stored

in a database table. The records in this table

can be linked to one or more evaluation

questions. For consistency and ease of

implementation, all web services require the

same three (3) input parameters: Staff ID,

From Date, and To Date.

 To Create a Performance Evaluation

Question: The Supervisor creates an

evaluation question to include in the

assessment instrument. This question will

belong to one of the existing appraisal areas.

 To Create a Performance Evaluation

Questionnaire: The assessment instrument

used to evaluate job performance is a custom

questionnaire. It is composed of questions in

different appraisal areas. The questions vary

according to the job description and duties

assigned. A Supervisor can create custom job

performance evaluation questionnaires, and

include only those questions pertinent to the

job description of the Employee to be

evaluated. Additionally, the supervisor can

modify the criteria used to score a question as

Outstanding, Satisfactory, Marginal, or

Unacceptable.

Assessment Delivery

This section includes use case specifications

related to the use of the assessment instrument:

 To Evaluate an Employee’s Job

Performance: Each evaluation question is

rated with a numeric score as shown in Table 1

below. The average of all individual scores is

used to appraise the overall employee’s job

performance. The Performance @ppraisal

application will display detailed information of

the criteria used to score each evaluation

question.

Table 1

Evaluation Question Scores

Description Numeric Value

Outstanding 3

Satisfactory 2

Marginal 1

Unacceptable 0

 To Review an Employee’s Job Performance:

Employees receive an automated e-mail

notification when their performance evaluation

is ready for review. They can examine the job

evaluation online, with all the external

empirical data used to score the questions.

Employees can add comments to any of the

question scores. In addition, they can add a

comment to the overall job performance

evaluation. These comments are stored in the

database, and an e-mail notification is sent to

the supervisor indicating that the job

performance evaluation was reviewed by the

employee.

Development Plan

The following use case for development plans

based on the results of the job performance

evaluation:

 To Create a Development Plan: Based on

the performance evaluation results, supervisors

can create a development plan to assist their

employees to strengthen existing skills and to

acquire new ones. It will also set goals with

specific deadlines to measure developmental

progress. The Performance @ppraisal system

will suggest some remedial action to be

included in the development plan based on the

job performance evaluation results.

Guidance

The following use cases to provide online

documentation with guidelines [2] and best

practices for supervisors to create and use custom

assessment instruments:

 To Provide Guidance and Best Practices to

Create an Evaluation Questionnaire: The

Supervisor consults the Performance @ppraisal

Evaluation Knowledgebase to read online

documentation about the performance

evaluation policies. In addition, he / she can

read articles about best practices to evaluate an

employee’s job performance. The user can

browse documents by area or search by title or

description.

 To Provide Guidance and Minimal Criteria

to Assign Scores: The Supervisor can consult

in the Performance @ppraisal Evaluation

Knowledgebase articles about best practices

when evaluating an employee’s job

performance. The user can browse documents

by area or search by title or description.

DATABASE DESIGN

The database design was based on the software

requirements specifications (SRS) extracted from

the use case specifications.

See the Entity-Relationship (ER) Diagram for

Assessment Administration in Figure 2 below.

Figure 2

Entity – Relationship Diagram: Assessment Administration

See the Entity-Relationship (ER) Diagram for

Assessment Delivery in Figure 3 below.

Figure 3

Entity – Relationship Diagram: Assessment Delivery

Figure 4

Entity – Relationship Diagram: System Administration

Stored Procedures

To make the source code easier to understand

and to maintain, and to optimize the system

performance, all database operations were

encapsulated in stored procedures. See a list of

stored procedures in Table 2 below.

Table 2

Stored Procedures: Assessment Administration –

Evaluation Questions (EQ)

Name Description

sp_area_create Create a new Appraisal Area

sp_area_delete Delete an Appraisal Area

sp_area_read Read an Appraisal Area record

sp_area_update Update an Appraisal Area

sp_question_available

_empirical_grid

Data grid of Empirical Data

Sources not related to an EQ

sp_question_available

_remedial_grid

Data grid of suggested Remedial

Actions not related to an EQ

sp_question_create Create an EQ

sp_question_criteria Read the minimal Criteria to score

an EQ

sp_question_delete Delete an EQ

sp_question_

empirical_create

Create a new related Empirical

Data Source for an EQ

sp_question_

empirical_delete

Delete a related Empirical Data

Source from an EQ

sp_question_

empirical_grid

Data grid of Empirical Data

Sources for an EQ

sp_question_

empirical_read

Read a record of the Empirical

Data Sources related to an EQ

sp_question_

empirical_update

Update the Empirical Data Source

of an EQ

sp_question_read Read an EQ record

sp_question_

remedial_create

Create a new suggested Remedial

Action for an EQ

sp_question_

remedial_delete

Delete a suggested Remedial

Action for an EQ

sp_question_

remedial_grid

Data grid of suggested Remedial

Actions for an EQ

sp_question_

remedial_read

Read a record of suggested

Remedial Action for an EQ

sp_question_

remedial_update

Update a suggested Remedial

Action for an EQ

sp_question_update Update an EQ

sp_question_update Update an EQ

Table 3 below lists all stored procedures used

in Assessment Administration: Evaluation

Instrument (EI).

Table 3

Stored Procedures: Assessment Administration –

Evaluation Instrument (EI)

Name Description

sp_questionnaire_

available_question_grid

Data grid of Evaluation

Questions not included in an EI

sp_questionnaire_ create Create a new EI

sp_questionnaire_

question_create

Add a new Evaluation Question

to the EI

sp_questionnaire_

question_update

Update an Evaluation Question

in the EI

sp_questionnaire_

question_delete

Delete an Evaluation Question

from the EI

sp_questionnaire_

question_grid

Data grid of Evaluation

Questions included in an EI

sp_questionnaire_

question_read

Read the record of an Evaluation

Question in the EI

sp_questionnaire_

question_score_update

Update the Evaluation Question

Score in the EI

sp_questionnaire_

question_update

Update an Evaluation Question

in the EI

sp_questionnaire_read Read an EI record

sp_questionnaire_update Update an EI

See a list of stored procedures for Assessment

Delivery: Performance Evaluation (PE) in Table 4.

Table 4

Stored Procedures: Assessment Delivery Performance

Evaluation (PE)

Name Description

sp_evaluation_create Create a new PE

sp_evaluation_delete Delete a PE

sp_evaluation_read Read a PE record

sp_evaluation_ score_grid Datagrid of PE Scores

sp_evaluation_ score_read Read a PEScore record

sp_evaluation_score_update Update a PE Score

sp_evaluation_update Update a PE

Table 5 contains a list of stored procedures for

System Administration.

Table 5

Stored Procedures: System Administration

Name Description

sp_login_email Read Login Credentials for the e-mail

sp_login_lock Lock a User Account

sp_login_validate Validate Login Credentials

sp_user_create Create a new User Account

sp_user_delete Delete a User Account

sp_user_read Read a User Account record

sp_user_update Update a User Account

Data Views

Data grids in the Performance @ppraisal web

application are filled by data views to join the

necessary database tables. See a list of data views

in Table 2 below.

Table 6

Data Views

Name Description

v_area_list Appraisal Areas

v_empirical_list Empirical Data Sources

v_evaluation_list Performance Evaluations

v_login Authorized User Information

v_questionnaire_list Assessment Instruments

v_question_list Evaluation Questions

v_remedial_list Remedial Actions

v_user_list User Accounts

MODEL – VIEW – CONTROLLER

DESIGN PATTERN

Performance @ppraisal was implemented as a

three-tier web application by using the Model-

View-Controller design pattern to separate the user

interface (View) code from the business logic

(Controller) and database operations (Model) See

Figure 5 below.

Figure 5

The Model-View-Controller Design Pattern

The directory structure to store the source code

for the views and controllers is based on the design

areas to make the source code easier to understand

and maintain.

The controller implements the business logic

for the Performance @ppraisal web application.

One controller is defined for each use case

specification. The controller will invoke the model

functions and display the user-interface (views).

Controllers are stored inside directories

corresponding to the design areas. See Table 7

below for a list of controllers.

Table 7

Controllers

Name Description

Area Appraisal Area

question Evaluation Question

questionnaire Assessment Instrument

evaluation Job Performance Evaluation

Review Review Performance Evaluation

dev_plan Development Plan

guide_score Guidance – Evaluation Scores

guide_questionnaire Guidance – Assessment Instrument

All database operations were implemented in

models, one for each main database table. These

models will update the data in the main database

table and its related child tables. For instance, the

question model will update the question database

table and its related database tables:

question_criteria and question_empirical. The

question_criteria database table stores the minimal

criteria to assign each one of the scores for a

particular question. A question may be related to

zero or more empirical data sources, and these

relationships are stored in the related

question_empirical database table. See Table 8

below for a description of each model.

Table 8

Models

Name Description

Area Appraisal Area

Email E-mail Information

Evaluation Job Performance Evaluation

Login Login Credentials Validation

Question Evaluation Question

Questionnaire Assessment Instrument

stored_procedure Execution of Stored Procedures

User User Accounts

The user-interface is displayed in views that

receive the data from the controller. See a snapshot

of an Employee Job Performance Evaluation view

in Figure 6 below.

 Figure 6

Employee Job Performance Evaluation View

See a list of data views used by Performance

@ppraisal in Table 8 below.

Table 9

Views

Name Description

area_create Create a new Appraisal Area

area_list List all Appraisal Areas

area_update Update an Appraisal Area

empirical_create Create a new Empirical Data Source

related to an EQ

empirical_update Update an Empirical Data Source

related to an Evaluation Question

question_create Create a new Evaluation Question

question_list List all Evaluation Questions

question_update Update an Evaluation Question

remedial_create Create a new Remedial Action

related to an Evaluation Question

remedial_update Update a Remedial Action related to

an Evaluation Question

question_create Create a new Evaluation Question

question_criteria Display the criteria to score an

Evaluation Question

question_update Update an Evaluation Question

questionnaire_create Create a new Assessment

Instrument

questionnaire_list List all Assessment Instruments

questionnaire_update Update an Assessment Instrument

evaluation_create Create a new Performance

Evaluation

evaluation_list List all Performance Evaluations

evaluation_update Update a Performance Evaluation

score_create Create a new EQ Score

score_update Update an Evaluation Question

Score

All of these views use inherit from a global

website template class to standardize the web

application appearance. When this global template

changes, the change is reflected on all pages of the

Performance @ppraisal System application.

A directory structure based on the design areas

helps to organize the large number of views needed

by the Performance @ppraisal user interface. In

addition, the performance evaluation e-mail

notification uses an HTML body implemented as a

view.

SOFTWARE TOOLS

One of the most important goals for software

development in the U. S. Probation Office is the

ability to collaborate with agencies nationwide and

to share with them applications developed locally.

Since offices in different districts might have

different programming platforms and environments,

it is strongly suggested that new applications are

developed using open-source programming tools

that could be easily deployed across platforms. To

maximize the software longevity, we installed the

most recent version of the following software tools.

PHP 5.3.1

The business logic in the controllers was

implemented in PHP version 5.3.1, an open-source

scripting language to easily implement dynamic

HTML pages for web applications [3]. This

version of PHP supports object-oriented

programming.

Kohana 2.3.4

Kohana version 2.3.4 is a lightweight

framework for PHP 5 that offers libraries and

helpers to use the Model View Controller

architectural pattern in PHP that supports object

oriented programming [4]. It includes many useful

helper libraries to simplify common programming

tasks, such as the following: a SQL helper for

database operations, an HTML helper to

encapsulate the creations of tags, and a form helper

to add fields to a form, among others.

In the software design phase, I evaluated

different model-view-controller (MVC)

frameworks before selecting Kohana as the best

option. As a matter of fact, my first option was

CodeIgniter, another MVC framework for PHP 4.

It was easy to use, but did not work as expected

with PHP 5.3. When I realized it will not work

with the latest version of PHP, I discarded it, and

migrated the code to Kohana. It represented a delay

of two (2) weeks in software development. But I

consider it a wise investment of time in the long

run, considering the benefit of now having the latest

versions of the software tools.

One drawback of the Kohana framework it

does not work well with Microsoft Internet

Information Server (IIS 5) due to the difficulty of

implementing URL redirections in this web server.

However, it works fine in an Apache web server.

MySQL Database Server 5.1

The Model (database) layer was implemented

in a MySQL database server [5] version 5.1.

Database operations were encapsulated in data

views and stored procedures to optimize

performance and execution time.

Javascript 1.8

The client-side programming of the views was

implemented in JavaScript version 1.8, an object-

oriented scripting language integrated as a

component of the web browser. As a consequence,

the actual version of Javascript depends on the

version of the web browser running the application.

Javascript greatly enhances the user interface of

dynamic websites, for example, to implement the

monthly calendar popup window to select dates in a

form field.

PHP Documentor 1.4.3

PHP Documentor version 1.4.3 is a standard

auto-documentation tool for the PHP language to

create easy to read professional documentation

from PHP source code in different pre-designed

formats: HTML, PDF, Windows Helpfile CHM,

and in Docbook XMLGuidance [7]. We generated

a preliminary draft of the Performance @ppraisal’s

User’s Guide with this tool by selecting the source

code comments that we wanted to import, using

special opening tag /** to surround the comment

block.

The User’s Guide was generated in HTML to

be published as online help documentation with the

Performance @ppraisal web application. See

Figure 7 below for a sample page of the

Performance @ppraisal User’s Guide.

Figure 7

User’s Guide Sample Page

jQuery 1.3.2

jQuery version 1.3.2 is a fast and concise

JavaScript Library for rapid web development [6].

It simplifies event handling, animations, and Ajax

interactions for rapid web development. In

particular, we used it to implement the data grid

appearance and behavior.

CSS 2

The color scheme and other style settings are

implemented in a Cascading Style Sheet (CSS)

Level 2 to facilitate the configuration of the look-

and-feel of the Performance @ppraisal web

application in a single file.

CONCLUSION

The Performance @ppraisal web application

was implemented successfully as a three-tier

architecture using the Model-View-Controller

design pattern in PHP. As a result, the source code

is easier to maintain when paired with good

technical documentation and many comments in the

source code.

In the positive side, using a robust software

design, this application is scalable, easier to

maintain and to incorporate new features in future

releases. Software longevity was optimized by

installing the latest versions of the selected software

tools.

Collaboration was eased by selecting open-

source tools to reduce costs and optimize

compatibility across different platforms.

REFERENCES

[1] Administrative Office of the United States Courts, Office

of Probation and Pretrial Services, “The Supervision of

Federal Offenders”, Monograph 109, March 2008, pp. 1-

162.

[2] Administrative Office of the United States Courts, Office

of Probation and Pretrial Services,”Quality Performance

Management”, July 2006, pp. 1-9.

[3] The PHP Group,”PHP”, http://www.php.net.

[4] Kohana Team,”Kohana: The Swift PHP Framework”,

http://www.kohanaphp.com.

[5] Oracle Corp.,”MySQL”, http://www.mysql.com.

[6] Eichom, Joshua,” PHP Documentor”, www.phpdoc.org.

[7] The jQuery Project,” jQuery: Write less, do more”,

http://www.jquery.com.

