
Performance Evaluation in SQL Server

Simonely Hidalgo Lorenzo
Master in Computer Science
Dr. Nelliud Torres Batista
Electrical & Computer Engineering and Computer Science Department
Polytechnic University of Puerto Rico

Abstract ¾ A database table with millions of rows
could take a long time to retrieve, insert, update, and
delete data. The evaluation in this paper consists of
create indexes, apply normalization process, and
create surrogate key to improve the performance of
retrieving data. Explain the differences between
multiple types of indexes and which scenarios we
can use for each of them. To evaluate the
improvements, one table was created in SQL server
with 45 million rows. The analysis describes the
resources and I/O statistics used by Microsoft SQL
Server Management Studio. For non-indexed tables
is categorized sequentially searched and indexed
table that are compared as B-tree index. Finally, the
analysis was performed for normalization and
composite key.

Key Terms ¾ Microsoft SQL Server
Management Studio, optimization, performance,
SQL statistics

INTRODUCTION

In multiple Database books the tables indexes
are compared with the index card in a traditional
library where we can see a lot shelve with books.
Exist different way to find a book in the library for
example by author or title where each book has a
number assigned in the index card that belong the
same number in the shelve books, that is an analogy
between library index and database index to do
easier how retrieve the data quickly and efficiently.
But indexes will affect another transaction as Insert,
Update and Delete. Those different scenarios will be
discussed and evaluated in this paper.

Indexes are the means to providing an efficient
access path between the user and the data, by
providing this access path, the user can ask for data
from the database and the database will know where
to go to retrieve the data [1]. Creating and
maintaining an appropriate index file is a major issue

in database management systems, by using an
appropriate indexing mechanism, the query
processing algorithms may not have to search the
entire database [2]. When the query optimizer uses
an index, it searches the index key columns, finds the
storage location of the rows needed by the query and
extracts the matching rows from that location [3].
Generally, searching the index is much faster than
searching the table because unlike a table, an index
frequently contains very few columns per row and
the rows are in sorted order [3]. In this paper will be
discussed a different type of index, how to create the
index in SQL server, the benefits of each index and
demonstration of the performance improvement
using index. In the normalization section it discusses
the rules, and a database was created with
denormalized table and normalized table to be used
in the performance analysis. Also, the composite key
can affect the database performance, creating a
surrogate key can bring a benefit but also have a
drawback.

COMMON TYPES OF INDEXES

Clustered Indexes

Clustered Index is created with a column or
combination of columns that are selected as index
and are stored in orders to obtain a fast retrieval of
the rows. The columns added to the cluster index
should be the most used for the table. Only one
cluster index can be created by table since only the
physical table is sorted. An index contains keys built
from one or more columns in the table or view [3].
These keys are stored in a structure (B-tree) that
enables SQL Server to find the row or rows
associated with the key values quickly and
efficiently [3]. The heap index is the specific order
in which the rows are inserted since the table is

created. So the table with cluster index are called
cluster table or heap table if has not cluster index.

Non-clustered Indexes

Non cluster index stores the values of the
columns selected pointing to the clustered index.
Since only one cluster index is allowed per table the
data rows are not stored in order. This is nearly
identical to how a card catalog works in a library, the
order of the books, or the records in the tables,
doesn’t change, but a shortcut to the data is created
based on the other search values [1]. The pointer
from an index row in a non-clustered index to a data
row is called a row locator [3]. The structure of the
row locator depends on whether the data pages are
stored in a heap or a clustered table [3]. For a heap,
a row locator is a pointer to the row [3]. You can add
non key columns to the leaf level of the non-
clustered index to by-pass existing index key limits,
and execute fully covered, indexed, queries [3].

In table 1, a clustered index was created in
column Id so the physical table was rearranged to
that specific order. In table 2, the non-clustered
index was created for the Item column in ascending
order. That lookup table was created using the row
locater pointer to the clustered index in table 1.

Table 1
Clustered index

Id Item Qty

1 Paper pads 1

2 Pens 3

3 Notebooks 1
4 Books 1
5 Magazines 3

Table 2
Nonclustered index

Item Row Locator
Books 4

Magazines 5
Notebooks 3
Paper pads 1

Pens 2

Column Store Indexes

The column store index was designed for
retrieve large range of rows since traditional index
are more efficient for small range. This index is

recommended for Data warehousing fac tables. In
this index all columns of the table are included and
use data compression that reduce the storage
capacity. In this index all columns are stored by
separately instead of store all column of the same
row. The benefit of this type of index is that only the
columns and rows required for a query need to be
read [1]. This index uses column-based data storage
and query processing to achieve gains up to 10 times
the query performance in your data warehouse over
traditional row-oriented storage [4]. You can also
achieve gains up to 10 times the data compression
over the uncompressed data size [4]. Beginning with
SQL Server 2016 (13.x) SP1, columnstore indexes
enable operational analytics: the ability to run
performant real-time analytics on a transactional
workload [4]. The reason of column store index is
used for data warehouse where data do not change
frequently is because during the Insert, Update and
Delete statements take longer to create. To reduce
fragmentation of the column segments and improve
performance, the columnstore index might store
some data temporarily into a clustered index called a
deltastore and a B-tree list of IDs for deleted rows
[5]. Figure 1 shows the columnstore index. To return
the correct query results, the clustered columnstore
index combines query results from both the
columnstore and the deltastore [4].

Figure 1

Columnstore Index [4]

If you manage to INSERT a new row, the value
will be stored in the deltastore until it reaches the

minimum row group size, then it will be compressed
and moved to the Columnstore segment [5].

If you try to DELETE a row, this row will be
deleted from the deltastore storage, but it will be
marked as deleted on the Columnstore index
segment until the index is rebuilt [5].

When performing an UPDATE operation on a
row, the row will be deleted from the deltastore
storage, and marked as deleted in the Columnstore
segment and the new value will be inserted to the
deltastore [6].

XML Indexes

XML index are created for the columns with
xml data type storing the tags, values, and paths of
the column. That help for the query performance but
is very costly when the data change and for
maintenance. Building the index avoids parsing the
whole data at run time and benefits index lookups for
efficient query processing [6]. The XML index have
two categories: primary and secondary XML index.
The first index on the xml type column must be the
primary XML index [6]. Using the primary XML
index, the following types of secondary indexes are
supported: PATH, VALUE, and PROPERTY [6].
Depending on the type of queries, these secondary
indexes might help improve query performance [6].

INDEX VARIATIONS

Primary Key

A primary key is a unique value that identify the
instance in the table and typically composed of one
column but could be composed by multiple columns.
When the primary key is assigned in the database
table then the primary key index is created by default
as cluster index but if a cluster index is already
created then will be non-clustered.

Unique Index

A unique index can consist of one or multiples
columns. Like primary key this allow only a unique
value in the record. At difference of primary key this
index accepts null value, only one null value for row
is accepted in the unique index.

Filtered Indexes

This index is used in non-clustered index and
non-unique. The index limits the amount rows
filtering the relevant values. Reducing the number of
rows in the index improve the query performance,
reduce the storage cost, and reduce the maintenance
of the index.

Partitioned Indexes

The table is partitioned horizontally by the
column and range selected. The data in this index is
stored separated in each partition and can be spread
more than one filegroup but the index it still a single
logical object. This index is useful for tables with
billions of records. During the data retrieve the scan
is faster because make the search in specific data
subset. It can be used in clustered or non-clustered
index. SQL Server supports up to 15,000 partitions
by default [7]. Table 3 shows how a table partitioned
horizontally by years looks.

Table 3
Partition index

 Col 1 Col 2 Date

Partition 1
year 1

Partition 2
year 2

Partition 3
year 3

CREATING INDEXES

Indexes can be created by using SQL Server
Management Studio or Transact-SQL. Figure 2
shows the Transact-SQL command to create index
and their syntax options discussed in the type of
index and variants sections of this paper.

Figure 2

Syntax Options to Create Index in SQL Server

 PERFORMANCE INDEX EVALUATION AND

RESULTS

To demonstrate the index improvements one
table was created named PRODUCT with 55 million
rows in SQL server, one of the columns created is Id
and has integer values. The results were obtained
using “Estimate Execution Plan” tool from SQL
server found in the Query menu of Microsoft SQL
Server Management Studio, as figure 3 shows.

Figure 3

 Query Menu of Microsoft SQL Server Management Studio

The results of the SQL statement where the
index has not been created yet is showed in the figure
4. In this scenario the search will do a sequential
table scan until reach the id desired, also the I/O cost
for this execution is 1414.37 and CPU cost is
10.2043. In figure 5 shows the SQL IO statistics
where the scan count was 13 and the logical reads
was 1,923,853. The total execution time was 9609
ms.

Comparing this result with a clustered index in
the figure 6. We can prove the improvement using
the same SQL query. The results show the I/O cost
of 0.003125 and the CPU Cost 0.0001581. In the
figure 7 the elapsed time was 72 ms, the Scan count
was 1 and the logical read was 4.

The indexes make a search faster by using a B-
Tree structure or a Balanced Tree structure. In the B-
Tree structure data is divided into root nodes, non-
leaf nodes and leaf nodes. The algorithm used in B-
Tree searching is a binary tree search and goes with
recursion. The time of complexity is O(log n). The
objective is reducing the number of disk access.

Figure 4

 IO cost without index

Figure 5

 SQL Time Statistics

Figure 6

IO Cost with Index

Figure 7

SQL Statistics for Clustered Index

Table 2 contains the time statistics results for
each SQL statement (SELECT, INSERT, DELETE
and, UPDATE). The SELECT statement was faster
with index than non-indexed and for INSERT,
DELETE and UPDATE took more time. The
increase time is because need to do extra work in re-
arrangement of the indexes.

Table 2
 SQL Time Statistics

SQL
Statement

Number of
Rows

Execution Time (ms)
No Index Index

SELECT 1 90277 72
INSERT 9763855 39864 62894
DELETE 9763855 47616 83215
UPDATE 9763855 45486 62184

The two values from I/O statistics results that
we are using to measure the performance are scan
counts and logical reads. Scan count is number of
seeks or scans started after reaching the leaf level in
any direction to retrieve all the values to construct
the final dataset for the output. [8]. The logical reads
are number of pages read from the data cache. To
obtain those values in the output it needs to be turned
on (Set Statistics IO on) before to execute of the SQL
Statement. Table 3 contains the result of scan counts
and table 4, the logical reads values.

Table 3
 SQL I/O Statistics (Scan Counts)

SQL
Statement

Number
of Rows

Scan Counts
Not Index Indexed

SELECT 1 13 1
INSERT 9,763,855 0 0
DELETE 9,763,855 13 1
UPDATE 9,763,855 13 1

Table 4
SQL I/O Statistics (Logical Reads)

SQL
Statement

Number
of Rows

Logical Reads
Not Index Indexed

SELECT 8,451,155 1,923,853 4
INSERT 8,451,276 10,109,477 4,865,287
DELETE 8,451,397 11,687,708 9,483,339
UPDATE 8,451,397 11,833,877 4,088,986

In the query performed with index and without
index the result shows that with index it faster to
identify the record because use less logical reads but
when it is necessary to reorganize the index took
more time to complete.

NORMALIZATION

The database normalization has multiples
benefits. When the normalization rules are applied
the benefits are, avoid anomalies in the data, reduce
large table into smaller tables avoiding data
redundancy, maintain the data integrity reducing
multiples entries and updates, the Insert and Update
operations will be more quickly. With less data then
maximize the storage capacity. The drawback is that
with multiples tables then require more joining and
complicate queries, also impact the data search
performance where will we see it in the results
section. Those rules are called first normal form
(1NF), second normal form (2NF) and third normal
form (3NF).

First normal form (1NF) is now considered to be
part of the formal definition of a relation in the basic
(flat) relational model; historically, it was defined to
disallow multivalued attributes, composite
attributes, and their combinations [9]. It states that
the domain of an attribute must include only atomic
(simple, indivisible) values and that the value of any
attribute in a tuple must be a single value from the
domain of that attribute [9]. Hence, 1NF disallows
having a set of values, a tuple of values, or a
combination of both as an attribute value for a single
tuple. In other words, 1NF disallows relations within
relations or relations as attribute values within tuples
[9]. The only attribute values permitted by 1NF are
single atomic (or indivisible) values [9].

Second normal form (2NF) is based on the
concept of full functional dependency [9]. Create
separate tables for sets of values that apply to
multiple records [9]. Relate these tables with a
foreign key [9]. A functional dependency X → Y is
a full functional dependency if removal of any
attribute A from X means that the dependency does
not hold any more; that is, for any attribute A ε X,
(X – {A}) does not functionally determine Y [9]. A
functional dependency X → Y is a partial
dependency if some attribute A ε X can be removed
from X and the dependency still holds; that is, for
some A ε X, (X – {A}) → Y [9]. A relation schema
R is in 2NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R
[10x].

Third normal form (3NF) is based on the
concept of transitive dependency [9]. A functional
dependency X → Y in a relation schema R is a
transitive dependency if there exists a set of
attributes Z in R that is neither a candidate key nor a
subset of any key of R, ^10 and both X → Z and Z
→ Y hold [9]. Values in a record that are not part of
that record's key do not belong in the table. In
general, anytime the contents of a group of fields
may apply to more than a single record in the table,
consider placing those fields in a separate table [10].

Normalization Results

Figure 8 shows one table denormalized, after
applying the normalization rules four additional
tables were created to decomposing into smaller
relational schema with desirable properties as shown
in figure 9. I will use both scenarios to evaluate the
performance of data collection and space used.
These entities belong to a rental company with
different branch and each item has its own product
number associated to one branch. During the
normalization as well as of the of minimizes the risk
of update anomalies also reduce the physical storage
used, to calculate the space used I executed the
system stored procedures “sp_spaceused” provided
by SQL server and the results are shown in table 4,
where we can see the space reduction, for
denormalized table named “INVENTORY_D” the

consume was 5.3 GB and the sum of the four tables
created during the normalization was 3.5 GB so the
reduction in space was 2.8 GB for a 33%.

Figure 8

Denormalized Table

Figure 9

Normalized Table

Table 4
Space Used During Normalization

Table Name Total
Rows

Data
Space
(kb)

Total
Space
Used
(kb)

Sum
of

tables
used
(Gb)

Category 3000791 206376 206384

3.5
Inventory 44535813 3321736 3321744

Branch 15 8 16
Customer 391795 20152 20168

Inventory_D 4453583 5326576 5326592 5.3

To evaluate the resources consumed in
normalized and denormalized scenarios I used
“Display Estimate Execution Plan” tool provided by
SQL Server. The results for an “SELECT” statement
query is shown in figure 10, where the table is
denormalized and its I/O Cost is 493.204 and CPU
cost 48.9896. Versus an I/O cost of 307.571 and
CPU cost of 8.1575 for a normalized table shown in
the figure 11. The “SELECT” statement was faster
for denormalization tables but consume more system
resources. The results for the time statistics provided
by SQL are found in table 5. The I/O statistic results
that measure the query performance for SQL are
shown in tables 6 and 7 where we can see the scan
count and the logical read that SQL used during the
query execution and shown why denormalized tables
was faster than normalized. But for the Insert,
Update and Delete in the normalized tables are faster
than denormalized.

Figure 10

Resources Used in Denormalized Table

Figure 11

Resources Used in Normalized Table.

Table 5
Normalization Time Statistics

SQL
Statement

Number of
Rows

Execution Time (ms)
Denormalized Normalized

SELECT 8,451,155 104,610 115,720
INSERT 8,451,276 33,520 27,315
DELETE 8,451,397 19,350 14,250

Table 6
Normalization SQL I/O Statistics (Scan Counts)

SQL Statement
Number
of Rows

Scan Counts
Denormalized Normalized

SELECT 8,451,155 1 13
INSERT 8,451,276 13 13
DELETE 8,451,397 13 13

Table 7
Normalization SQL I/O Statistics (Logical Reads)

SQL Statement
Number
of Rows

Logical Reads
Denormalized Normalized

SELECT 8,451,155 665,822 1,028,578
INSERT 8,451,276 9,268,718 8,940,630
DELETE 8,451,397 8,940,749 9,232,663

COMPOSITIVE KEY

The composite key is a combinations of
multiples column that identified the row as primary
key and is also known as natural or real key. This
type of larger key impact the performance during the
Select, Insert, Delete and Update. The surrogate key
is not natural key that is auto generated by the system
preferably integer value to avoid a composite key.
That improve the performance since use a smaller
key and help in the index maintenance because the
value increment sequentially. This can be added as a
new attribute or can be created in other entities used
as lookup table. The drawbacks are increase the
storage capacity since a new attribute is created,
since surrogate key values are just auto-generated
values with no business meaning it's hard to tell if
someone took production data and loaded it into a
test environment [11], Extra column(s)/index for
surrogate key will require extra IO when
insert/update data [11].

CONCLUSION

We saw the Indexing, normalization and
composite key and their behavior in the database
performance. Each of one have their benefits and
drawbacks. we need to be clear of how the data will
be consumed if it for transactional or analytical
purpose. For example, the improvement was noticed
significantly when the cluster index was created in
term of execution time for one simple query
executed was 9 seconds faster, but inserting was
slower. So probably some of cons doesn’t apply to
your application. In the data warehouse the
normalization makes the data retrieve slow but in a
transactional system where need to maintain the
integrity of the data, make insert, delete, and update
then the normalization is beneficial. Finally,

regarding a surrogate key makes sense that when you
perform a search of a primary key that have a long
string then will be faster when is performed in a
small integer value. Using the SQL tools provided
by Microsoft SQL Server Management Studio was
useful to evaluate which SQL Statements have better
performance according with the applications or
business needs.

REFERENCES
[1] J. Strate and T. Krueger, Expert Performance Indexing for

SQL Server 2012. New York: Apress, 2012. [Online].
Available:
https://www.apress.com/gp/book/9781430237419

[2] B. Thuraisingham, Database and Applications Security,
Boca Raton, FL: Taylor & Francis Group, 2005.

[3] Microsoft, “Clustered and nonclustered indexes
described,” December 14, 2020 [Online]. Available:
https://docs.microsoft.com/en-us/sql/relational-
databases/indexes/clustered-and-nonclustered-indexes-
described?view=sql-server-ver15

[4] Microsoft, “Columnstore indexes: overview,” May 26,
2021 [Online]. Available: https://docs.microsoft.com/en-
us/sql/relational-databases/indexes/columnstore-indexes-
overview?view=sql-server-ver15

[5] A. Yaseen, “SQL Server 2014 Columnstore index,”
SQLShack, April 29, 2016 [Online]. Available:
https://www.sqlshack.com/sql-server-2014-columnstore-
index

[6] Microsoft, “XML Indexes (SQL Server),” June 23, 2021
[Online]. Available: https://docs.microsoft.com/en-
us/sql/relational-databases/xml/xml-indexes-sql-
server?view=sql-server-ver15

[7] Microsoft, “Partitioned tables and indexes,” January 28,
2021 [Online]. Available: https://docs.microsoft.com/en-
us/sql/relational-databases/partitions/partitioned-tables-
and-indexes?view=sql-server-ver15

[8] Microsoft, “Set statistics IO (Transact SQL),” January 29,
2021 [Online]. Available: https://docs.microsoft.com/en-
us/sql/t-sql/statements/set-statistics-io-transact-
sql?view=sql-server-ver15

[9] R. Elmasri and S. Navathe, Fundamentals of Database
Systems. London: Pearson, 2015.

[10] Microsoft, “Description of the database normalization
basics,” May 17, 2021 [Online]. Available:
https://docs.microsoft.com/en-
us/office/troubleshoot/access/database-normalization-
description

[11] B. Snaidero, “Surrogate key vs natural key differences and
when to use in SQL server,” MSSQLTips, April 16, 2018
[Online]. Available:
https://www.mssqltips.com/sqlservertip/5431/surrogate-
key-vs-natural-key-differences-and-when-to-use-in-sql-
server

