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Abstract 

The meaning of the scalar product of two vectors can be easily 
extended to a space of n dimensions. Similar generalization, related to the 
cross-product of vectors with more than three components, has not been 
formulated in matrix notation. This paper explicitly defines the result of the 
cross-product of vectors with an arbitrary number of components. The 
operation is based on the concept of the annulment matrix of a vector. 

Sinopsis 

El significado del producto escalar de dos vectores ha sido facilmente 
extendido a un espacio de n dimensiones. Una generalizacion similar, pero 
relacionada con el producto vectorial de dos vectores, no se ha formulado 
usando notacion matricial. Este trabajo define explicitamente la operation 
del producto vectorial de dos vectores con un numero arbitrario de 
componentes. Tal definition se establece a partir del concepto de la matriz 
anulante de un vector. 
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Introduction 

It has been stated that all concepts of three-dimensional geometry 
generalize to a vector of any fmite order n V However, concerning the 
cross-product of vectors such a generalization has not been defined and this 
type of operation does not find a simple counterpart in matrix algebra2. 

This paper presents the formulation of a matrix expression that defines 
the cross-product of two vectors of arbitrary order n. Obviously, such a 
formulation must coincide with the one currently used for the particular 
case in which n=3. 

Furthermore, the generalization is extended to the definition of the 
cross-product involving (n-1) vectors in a space of n dimensions, in order 
to solve the following problem: given (n-1) vectors with n components 
each, Vj, V2, ... V,,.,, find a nonzero vector Vn that is normal to each of 
them. 

The annulment matrix of a vector 

Consider a vector U with n components. The annulment matrix of this 
vector will be represented by [N]u and defined as follows: 

[N]u= [I] -U xU/U.U (1) 

where [I] stands for the identity matrix of order n and UxU indicates a 
matrix resulting from the tensor product of U by itself. The scalar product 
of U by itself, represented by U.U, leads to the square of its length | U |. 

Bathe, K.J. and Wilson, E.L., 1976, Numerical Methods in Finite 
Element Analysis, Englewood Cliffs, New Jersey: Prentice-Hall, Inc,. 

2 Zienkiewicz, O.C., 1977, The Finite Element Method, Third 
edition. London, Great Britain: Mc Graw-Hill Book Co. (UK) Ltd. 
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Accordingly, if uk stands for the k-th component of U, then: 
U.U = u,2 + ... + un2 = jU |2 (2) 

The appellation used for [N]u comes from the fact that [N]uU={0}; that 
is, premultiplication of a vector by its annulment matrix yields a null 
vector. It is easy to verify that the i-th diagonal component of [N]u is equal 
to (| U 12-ui2) / | U | 2, while an off-diagonal component, in row i and column 
j, has the value -u,Uj /1U |2. 

Projections of a vector 

Consider two vectors, U and V, with n components each one. The 
projection of any vector on the direction defined by another is related to the 
scalar product of both vectors and we may write: 

V component along U = (U.V/U.U) U (3) 

When the annulment matrix of U premultiplies V the result is the 
projection of the latter on a direction normal to the former, that is: 

V component normal to U = [N]UV=V-(U x U/U.U) V (4) 

Accordingly, the scalar product involving U and [N]UV is identical to zero 
and the annulment matrix of U represents a linear transformation that maps 
V to the component of V normal to U. 

It can be shown that the i-th component of [N]UV is equal to the 
expression {vs - (U.V/U.U)^}, in which Uj and Vj stand for the i-th 
component of U and V, respectively. Therefore, this vector coincides with 
one obtained by means of the Gram-Schmidt orthogonalization applied to 
the original vectors U and V 3. 

3 Goodbody, A.M., 1982, Cartesian Tensors, New York, New York: 
John Wiley and Sons. 
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If n=3 it is evident that the length of U times the length of [N]UV 
yields the length of the vector that results from the cross product involving 
U and V since [N]UV expresses the projection of V on a direction normal 
to U. However, [N]UV is normal to U but not to V and therefore it can not 
be used to identify the direction of the "cross product" UxV. Nevertheless, 
this direction can be defined following the rules discussed below. 

The cross-product of two vectors in n dimensions 

In relation with vectors U and V previously considered, let [N]uv 

represent the annulment matrix of vector [N]UV. If {1} stands for a vector 
whose n components are equal to one, it may be shown that the vector 
resulting from the operation [N]uv times {1} is normal to both original 
vectors, U and V. Accordingly, the three vectors U, [N1UV and [N]UV[N]U{1} 
are pairwise normal and the direction parameters of the latter can be used 
to identify the direction of vector W resulting from the cross product UxV. 
As stated before, the length of W is obtained by multiplying the length of 
U by the length of [N]UV. 

Following above considerations an explicit matrix expression can be 
derived for the calculation of W. Let us first construct an (n x 3) matrix 
[M] with vectors {1}, U and V as illustrated below: 

[M] = [{1} U V] (5) 

and let us now define a (3 x 3) matrix [S] as the result of the product of 
[M] transpose times [M], that is: 

[S] = [M]t [M] (6) 

It is evident that [S] is symmetric and that each of its components is 
identified by a scalar product as follows: 

S„= {!}.{l} = n (7) 
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S]2 = {1}-U = u,+u2+ ... +un 

S ,3 = {1}.V = v,+v2+ ... +vn 

S22= U.U = Uj2+u22+ ... +un2 

(8) 
(9) 

(10) 

( U )  
(12)  

S23 = U.V = u,v,+u2v2+ ... +unvn 

S33 = V.V = v,2+v22+ ... +vn2 

Scalar product expressions detailed above assume that the components 
of all vectors are written in reference to an orthogonal system of 
coordinates, that is, one in which the metric tensor [GJ is equal to the 
identity matrix [I]. Had these vectors been referred to a non-orthogonal 
system of coordinates, the corresponding metric tensor [G] would have been 
taken into consideration in the calculation of each scalar product. 

Finally, if C stands for a 3-component vector listing the first row 
cofactors of determinant | S |, and D represents the numerical value of the 
same determinant, it may be shown that the following matrix expression 
gives the cross-product of two vectors U and V of order n: 

Moreover, if W denotes the resultant vector, the square of its length is 
equal to the first cofactor C„ that is, | W |2 = C,. If we are only interested 
in the direction of W, the denominator Vd can be omitted and the 
calculation can be limited to [M]C. 

Let us examine whether the cross-product definition established above 
leads to the one currently used in the 3-dimensional space, that is, the 
particular case in which n=3. For this purpose, we define the three 
determinants shown in equation 14. It can be shown that in this case, Vd = 
dj +d2+ d3 and the j-th component of [M]C is equal to dj / (d, + d2 + d 3). 
Therefore, Wj = dj, as prescribed by the cross-product rule in three 
dimensions. 

UxV = [M]C/VD (13) 
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di = 
u2 u3 U3 u, u2 , d2 = / ^3 = 1 1 > >

, v2 v3 V3 Ul. 

1 1 > >
, 

(14) 

Numerical example involving 2 vectors in 4 dimensions 

Let U and V transpose equal to [4 - 5 7 3] and [-11 9 3 2], 
respectively. Forming matrices [M] and [S] previously described: 

[M] = [ {1} U V ] = 

1 4 -11 

1 -5 9 
1 7 3 

1 3 2 

(15) 

[S] = [M]T [M] = 

The first row cofactors of I S I are: 

4 9 3 

9 99 -62 

3 -62 215 

C, = 99x215 - 62x62 = 17441 
C2 = -9x215 - 3x62 = -2121 
C3 = -9x62 - 3x99 = -855 

(16) 

(17) 
(18) 
(19) 

Accordingly, C transposed is equal to [17441 - 2121 - 855] and th 
expansion of det S by the first row yields: 

D = 4 x 17441 - 9 x 2121 - 3 x 855 = 48110 (20) 

Performance of the operation |M]CMj leads to vector W equal to the cros: 
product involving vectors U and V: 
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W  = U  * V  =  

18362 

[M] C 1 20351 

v/D" ^48 HO 29 

9368 

(21) 

The square of the length of W is given by the first cofactor of [ S j, that is: 

In 3-dimensional space the following relationship exists between the 
lengths of 2 vectors U and V, the length of the vector obtained by the 
cross-product U x V and the result of the scalar product U.V: 

The generalized cross-product definition previously described preserves 
such relationship. In the numerical example under consideration we have 
that (-62)2 + 17441 = 99 x 215. 

The cross-product of (n-1) vectors in n dimensions 

The criteria described above can be extended to formulate a more 
proper generalization of cross-product definition involving (n-1) vectors, V„ 
Vj, ..., Vn_j, in a space of n dimensions. Such a formulation will establish 
the rule to obtain a vector Vn that is normal to the hyperplane spanned by 
the (n-1) given vectors. 

First we shall construct an (n x n) matrix [M] using vectors {1}, V„ 
Vj,..., V^j to define its n columns as follows: 

| W |2 = C, = 17441 (22) 

(U.V)2 + | U x V |2 = | TJ 121 V r (23) 

[M] = [{1> V, V2 - Vn.,] (24) 

7 



Deschapelles/The generalized cross-product of vectore 

Then we shall calculate an (n x n) matrix [S] in such a way that its 
component in row i and column j is equal to the scalar product involving 
the i-th row of [M]T and the j-th column of [M], that is: 

[S] = [M]T[M] (25) 

Finally, if C stands for an n-component vector listing the First row 
cofactors of determinant | S | and D is equal to the numerical value of the 
same determinant, the following matrix expression defines a new vector Vn 

which represents the cross-product related to the (n - 1) given vectors: 

Vn = [M] C / VD (26) 

It may be verified that the square of the length of Vn is equal to the first 
cofactor of J S [, that is, 

V „ | 2  =  c, . (27) 

A new symbol should be used when referring to this type of operation 
in order to avoid confusion with a multiple cross-product involving (n - 1) 
vectors in a 3-dimensional space. The author proposes to use an asterisk (*) 
rather than a cross (x) and the operation could be termed asterisk-product 
rather than cross-product. We would then summarize the contents of this 
work with the definition of a new type of product, the asterisk-product, as 
follows: 

vn = V,* V2 * ... * Vn., = [M]C / Vdet S (28) 

where [M] = [{1} V, V2 ... Vn_,], | S | is the determinant related to matrix 
[M]T[M] and C is a vector whose n components are equal to the first row 
cofactors of | S |. Normalized expression of Vn can be obtained by dividing 
each component by VC,. 
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Applications 

The asterisk product previously defined may be used to solve the 
following system of n equations: 

An X i+ A12X 2 + A13 X3 + ... + Aln xn = 0 (29) 
A21 x , +A22 x 2 + A23 x3 + ... + A2n xn = 0 (30) 

+\.^2+ K-I.2 X3 + ...+ An_, nxn = 0 (31) 
x,2 + x22 + X32+ .. + xn2 = 1 (32) 

Coefficients of the i-th equation will be considered equal to die n 
components of vector V1? that is, 

Components of V, = A,„ Al2, Ai3, A^ (33) 

It is clear that if we perform the asterisk product of the (n - 1) vectors 
constructed with the first (n - 1) equations, die components of the resultant 
normalized vector will yield the solution of the system. As a numerical 
example let us solve the following problem: 

x, - 2 x2 +7X3 - 4X4 = 0 (34) 
3x, + 6X2 - 5 x3 + 8X4 = 0 (35) 
9x, -10x2 +12X3 -11X4 = 0 (36) 
x,2 + x22 + x32 + X42= 1 (37) 

The three vectors with 4 components each are: 

V, = [ 1 -2 7 -4 ] (38) 
V2 = [ 3 6 -5 8 ] (39) 
V3 = [ 9 -10 12 -II] (40) 
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[Ml =[{!) V, V2 VJ = 

i = 1,2,3 is: 

1 1 3 9 

1 -2 6 40 

1 7 -5 12 

1 4 8 41 

(41) 

Matrix [S], obtained with the matrix product [M]T [M] is: 

[S] = 

4 2 12 0 

2 70 -76 157 

12 -76 134 481 

0 157 481 446 

(42) 

Vector C listing the first row cofactors of determinant | S | is: 

C transpose = [ 330532 - 119754 - 89810 5708 ] (43) 

The numerical value of determinant S is 4900 and the asterisk producl 
involving vectors V,, V2 and V3 is: 

v„ =V, *V, *V3 =[M] 5-. 
^det S 

404 

-370 

140 

404 

(44) 

Finally, normalizing V4, that is, dividing its components by ^330532, the 
vector of solutions is found as follows: 
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X = 

-0.180895 

-0.0643569 

0.243513 

0.702708 

(45) 

Another application of the numerical procedures described above is the 
generation of an orthogonal basis related to a pair of vectors in n-space. 
For instance, consider vectors U and V with components (4, -5, 7, 3) and 
(-11, 9, 3, 2), respectively. In the first example of this work we detailed the 
calculation of vector W as the result of the cross-product U x V. 
Performance of the asterisk product U * V * W leads to a fourth vector P 
and the normalized components of U, V, W, and P may be used to identify 
an orthonormal matrix. The reader may check that, to a few digit accuracy, 
normalized Phas the following components: (-0.07606, -0.11197, -0.20943, 
0.39297) 

Conclusions 

A simple matrix expression has been developed to generalize the 
definition of cross-product involving vectors with n components. When n>3 
and two linearly independent vectors U and V are given, the new 
formulation yields a third vector W that satisfies equations 46 and 47. 

These conditions coincide with those related to the conventional cross-
product definition when n = 3. However, when n > 3, more than two 
linearly independent vectors, V, thru Vm (m < n), can be given and a new 
vector W orthogonal to each of them might be of interest. The 
generalization established in this work leads to such a vector W which 

U.W = 0, V.W = 0 (46) 

W | 2  =  [  U  | 2 1  V  | 2  -  ( U . V )  (47) 

11 



Deschapelies/The generalized cross-product of vcctore 

identifies the normal to the hyper-plane spanned by the given vectors. To 
avoid confusion with the multiple cross-product involving more than two 
vectors in a 3-space, another word should perhaps be used to describe the 
type of operations related to the generalized definition of the cross-product 
involving more than two vectors with n components each of them. The 
appellation asterisk product is suggested in this work. 

It is clear that with the described numerical procedures we can generate 
a normal basis in n-space from two linearly independent vectors by means 
of a formulation different from the one used in the Gram-Schmidt 
orthogonalization method. 

Finally, given (n - 1) vectors in an n-space, the asterisk product defined 
in this work yields a non-zero vector that is normal to each of them. 
Accordingly, such type of product may be considered the proper 
generalization of the cross-product. 

The scalar product of two vectors with arbitrary number of components 
is used to test the orthogonality condition. The equation U.V=0 indicates 
orthogonal relationship. Similarly, after the generalized formulation of the 
cross-product herein presented, we may test the parallelism between vectors. 
A zero result for the cofactor Cl5 as shown in equation (48), expresses the 
parallel relationship. 

lu Mv I2 - (u • v>2 = o (48) 
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