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Abstract 

In this paper the author uses the concept of circulant matrices and the 
superposition principle to find, from the adjacency matrices of three regu ar 
graphs of order 8 and degree 2, tire adjacency matrix, M, of a strong y 
regular graph G(8,6,4,6). M is then decomposed, by means of addition 
subtraction, and the Kronecker product of matrices, to get tie a a'tiar 

matrix OH(2,4). Finally, tire paper shows how tire row vectors; o 11 
matrix can be found by using the elements of the finite fie 
the concept of the T-character. 

Sinopsis 

En este articulo el autor usa el concepto de matrices c*r^u'ant. " • 
principio de superposition para hallar, a partir de las matrices e i 
de (res graficos regulares de orden 8 y grado 2, Isi matriz £ ^ ̂  
de un grafico f-regular (fuertemente regular), G(8,6. , )• 
suma, la resta y el producto directo de matrices, M se escon P 
obtener la matriz de Hadamard OH(2,4). Finalmente.se mues ra 
vectores de fila de esta matriz se pueden detenninar a par 
elementos del cuerpo finito GF(22) y del caracter-T. 
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1. Introduction 

The theory of strongly regular graphs was introduced by Bose in I9631 

in connection with partial geometries and 2-cIass association schemes. One 
year later (1964) Higman2 initiated the study of the rank 3 permutation 
groups using strongly regular graphs. Both, combinatorial and groupal 
aspects have been developed in recent years. Moreover, the interest in 
strongly regular graphs has been stimulated by the discovery of new simple 
groups. 

A graph, G, is a pair (X,R), where X is a set and R a symmetric, 
antireflexive relation on X, called adjacency. The elements of X are called 
vertices, and the elements of R edges. If G has v elements, and each one is 
adjacent to k other elements, the graph is regular. If, in addition to this, 
there are non-negative integers, X and p, such that any two adjacent 
elements are mutually adjacent to X other elements, and any two non-
adjacent elements are mutually adjacent to p other elements, the graph is 
strongly regular. The integers v, k, X and p are called the parameters of G; 
v is the order and k is the degree of G. 

The adjacency matrix, A=[h1J], of a graph is defined as follows: aH=0, 
an or j different from i, ay= "1 or 1 whether the vertices are adjacent or 
not. 

A Hadamard matrix, OH(2,r), is a square matrix of order r with 
e ernents {1,1} whose row vectors are orthogonal, i.e., HH-rIr, where H' 
is ie transpose of H, and Ir the unit matrix of order r. Hadamard matrices 

irst studied by Sylvester in 1867 and later by Scarpis in 1898. The 

,, ?°,Se' ^ ^ > Strongly Regular Graphs, Partial Geometries, and 
y alcmced Designs, Pacific J. Math. 13 (1963), 389-419. 

86 (1964^\g4;Tl56DG' Permutation GrouPs of Rank 3, Math. Z. 

182 



Rev. Univ. Politec. P R., Vol. 4, Num. 1 

next major work was done in 1933 by Paley. In 1944 and 1947 Williamson 
obtained further results of considerable interest. Since the 1950s these 
matrices have been studied considerably, and many contributions have been 
made toward proving the Hadamard conjecture, which states that OH(2,4t) 
matrices exist for every positive integer t. Applications of Hadamard 
matrices occur in statistics, engineering and optics. 

The most powerful theorems on the existence of OH(2,r) matrices are 
stated next3 

(i) Given any natural number n, there exists an OH (2 , 2 n ) 
matrix for every s > [21og2(n-3)]. 

(ii) Given any natural number n, and s as before, there exists a regu ar 
(i.e., constant row sum ) symmetric OH (2 , 22 n ) matrix vviti 
constant diagonal. 

Certain groups of Hadamard matrices, which play an important role^in 
t h e  c o n s t r u c t i o n  o f  c o d e s ,  a r e  a s s o c i a t e d  w i t h  G a l o i s  f i e l d s  ( f i n i t e  i e s )  
through the T-character. This is defined for the generic element a of GF(q) 

e (a) = exp[27tiTa) / p] 

where Tais any integer whose residue class mod p is the trace, T(a), and 
q=pm. The trace is a linear mapping from GF(q) onto GF(p) de ine y 

nH (2) 
T(w) =£>p)k 

k=J 
2. Definitions 

For l<i, j<8 let 

1 Geramite, A.V. and Seberry, J, Orthogonal Designs: Q^"*ic 
Forms and Hadamard Matrices (Lec. Notes in pure and app ie 

45, M. Dekker Inc 1979). 
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h.. = 0, hij4j= A ,  hjj= 1 for any other j (3) 

(4) 
M2= [hijl> hi>= °' hii<~ -1' hi, = 1 for any j 

m3= [hjj]. hii= °> K«= -*> hij= 1 for any other j 
(5) 

M1? M2, and M3 are tlie adjacency matrices of regular graphs G„ G2, and G3 

of order v=8 and degree k=2 (fig. 1) 

0 - 1 1 1 1 1 1 - 1  
- 1 0 - 1 1 1 1 1 1  
1 - 1 0 - 1 1 1 1 1  
I I - 1 0 - 1 1 1 1  
I I I - 1 0 - 1 1 1  
1 1 1 1 - 1 0 - 1 1  
1 1 1 1 1 - 1 0 - 1  

M , =  

- 1 1 1 1 1 1 - 1 0  

0  1 - 1 1 1 1 - 1 1  
1 0  1 - 1 1 1 1 - 1  

• 1  1 0  1 - 1 1 1 1  
1 -1 1 0 1 -1 1 1 
I I - 1 1 0  1 - 1 1  
I I I - 1 1 0  1 - 1  

- 1 1 1 1 - 1 1 0  1  
1 - 1 1 1 1 - 1 1 0  

•2 

7  
k  G 3  \, ./ £ M .  

0  1 1 - 1 1 - 1 1 1  
1 0  1 1 - 1 1 - 1 1  
110 11-11-1 
- 1 1 1 0  1 1 - 1 1  
1-1110 11-1 
- 1 1 - 1 1 1 0  1 1  
I - 1 1 - 1 1 1 0  1  
I I - 1 1 - 1 1 1 0  

ig. 1 Regular graphs G,, G2; G3 and their adjacency matrices Mj, M2 

and M, 
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3. Superposition principle. 
If we define the matrix operator . as, Mu. Mv = [a^l . [bj = [c^], 

where c,j= aB. = a,, if as= b, and 0,,= -1 otherwise, then the matrix M 
= (Mj.Mj) »Mjis the adjacency matrix of a strongly regular graph G 
with parameters \-8, k=6, A=4, and p=6 (fig. 2) 

/ 

\ 
N 

/ 

fi ' 5  

M 

0 -1 -1 -1 1 -1 -1 -
- 1  0 - 1 - 1 - 1  1 - 1 -

-1 -1 0-1-1-1 1 -
-1 -1 -1 0 -1 -1 *1 

1 -1 -1 -1 0-1-1-
-1 1 -1 -1 -1 0 -1 
-1 -1 1 -1 -1 -1 0 
-1 -1 -1 1 -1 "1 -1 0 

G(8.6-4.fi) 
Fig. 2. Relationship between matrix M and tire strongly regular graph G 

4. Decomposition of M 
Tire symmetric matrix M, can be expressed as the sum of two matrices, 

M = 

0 4 4 4 0 0 0 0 0 0 0 0 1 4 4 4 

-4 0 4 4 0 0 0 0 0 0 0 0 4 1 4 4 

4 4 0 4 0 0 0 0 0 0 0 0 4 4 1 4 

4 4 4 0 0 0 0 0 -0 0 0 0 4 4 4 1 

0 0 0 0 0 4 4 4 
+ 

1 4 4 4 0 0 0 0 

0 0 0 0 4 0 4 4 4 1 4 4 0 0 0 0 

0 0 0 0 4 4 0 4 4 4 1 4 0 0 0 0 

0 0 0 0 4 4 4 0 ."1 4 4 1 0 0 0 0 

;6) 
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which, using the Kronecker (direct) product can be written as shown in 
figure 4 

0 A A A A A A 
1 0 (SQ 4 0 A A 0 1 A A A 
0 1 4 A 0 A 1 0 

09 
A A A 

A A A 0 A A A 1 

or 

10 0 0 1 1 1 1  

T
 

T
 

T
 

1 0 
<8> 

0 1 0 0  1 1 1 1  0 1 A 1 A A 
0 1. 0 0 1 0  1 1 1 1  

+ 1 °. (g) 
- 1 - 1 1 4  

0 0 0 1  1 1 1 1  4 4 4 1 

In symbols 

(9) 
M =I2 ® (I4 "J4) +P, ® H1 

ere 12 is the unit matrix of order 4, I4 the unit matrix of order 16, J4 the 
withT mafX °^ort*er Pi pennutation matrix of order 4 associated 
GF(4) and C rC^rescntatl0n °P ^(4), the additive group of the finite field 
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H. = 

1 A A 4 

A 1 A 4 

A A 1 4 

A A 4 1 

(10) 

the OH(2,4) matrix. 

6. Remarks. 

(i) From HI, by means of M, we can get back the graph 
G(8,6,4,6). 

(ii) Strongly regular graphs of order 23m exist, and their adjacency 
matrices can be obtained by means of the group of 2 -1 
OH(2,22m) matrices 4 (Delsarte, P. and Goethals, J.M., 1969) 

7. Construction of the OIi(2,4) matrix from the GF(4) 

Let GF(22) = {0,l,x,x+l}, where x is a root of the irreducible 
polynomial x2 = x+1 over GF(2). Using definition (1), let 

(H) 
hxy(a) = e [a~'(y-x)2+1] 

where x, y are elements of GF(4), and a=l. Thus, hoo(1)= e(0) = 1. From 
definition (2), with m=l, and a=2 we have that T(l)-1, so 

(12) 

h01 = e (l) = e",T| = cos 711, = cos % = - 1 

4 Delsarte, P. and Goethals, J.M., Tri-weight Codes and Generalized 
Hadamard Matrices, Infrm. Control, 15 (1969), 196-206. 
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hox°J =e (x3) =e (x2x) = e [(x+l)x] =(x2 + x) 
= = e (x + 1 -K) = e (2x+ 1) =e (1)= - 1 

hox.,0) = e (x+ I)3 = e [(x2+l) (x+l)] 
= e [(x+ 1+ 1) (x+ 1)] 

= =e x (x4) =e (1)= - 1 

(h0„)<",h01<»h0x<",h0x.,<1') =(1,-1,-1,-1) 

Similarly we compute the remaining rows 

V = e (4) = e (1)=-1 

hi/1' =e (0) =1 

hlx(1) = e f(x4)3] = e [(x+1)3] =-1 

hix*i0) =e (x3) = -1 

Thus the second row of H, is (-1,1,-1,-1) 

hxo0) =e (-x3) =e (x3) = -1 
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V =e [(1-x)3] = e [(l + x)3] = e [(x+l)3] 

V =e (0) =1 

=e (1) =-1 

The third row is (-1,-1,1,-1) 

hx.,om =e [-(x+1)3] =e [(x+1)3] = -1 

hx„.™ = e (- x!) = - 1 

W  - e  ( " D  - - I  

•W,'" = e (0) = 1 

(-1,-1,-1,1) is the forth row of H,. 


