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Abstract 

This article presents a case study of a simple planar framed structure to 
show an original implementation of the stiffness method of structural analysis 
within MathCad numeric computation environment. This approach was used 
to introduce undergraduate students to the finite element method basis through 
the study of bar elements. As MathCad is a graphic environment, the student 
is able to 'see' the elements of the stiffness matrix, the effect of rotating from 
local to global coordinates, the assembling process of the structure stiffness 
matrix, and the decomposition used to introduce the boundary conditions. This 
aPproach has proven to be useful and didactic. 

Sinopsis 

Implantacion del metodo de rigidez en el ambiente de computacion 
numerico de MathCad 

Este articulo presenta el estudio de un portico piano simple para mostrar 
una implantacion original del metodo de rigidez para analisis estructural en el 
ent°mo de computacion numerica provisto por MathCad. Este procedimiento 
seutilizo para familiarizar un grupo de alumnos subgraduados con las bases 
del metodo de elementos finitos a traves del estudio de elementos de barra. 
Como MathCad es un ambiente grafico, los estudiantes pueden ver la matriz 
de rigidez de los elementos, el efecto de rotar de coordenadas locales a 
eoordenadas globales, el proceso de ensamblado de la matriz de rigidez go a 
de la estructura y la descomposicion que se realiza para presentar as 
eondiciones de contomo. Este enfoque ha demostrado ser muy util y 1 ac ico. 
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Introduction 

The stiffiiess method for the analysis of framed structures could be seen 
as a special case of the more general finite element method (FEM). The 
el °m! To'?, de"Ve 'he e'eme,U Stiffiless matrix for a"y °lh* 
H , ,nan °Wed t0 °btain sliffness matrix elements, vvh,ch 
nnli mesame matrix that can be obtained from the direct stiffness method 
2TZ' f Pec"hantyis 'be shape functions used to inteipolate the 

elemeDt are ",e exact solution for thc bar dement 
rZZin Sm d,splacements. a"d that the material is in the linear elastic 
efeminrT°nSeqUenCe°fthis sitUation is tllat in structures composed by bar 
subdunL aCCUr!7 0f the s0,uti0n ,s not improved if the bars are subdivided in several finite elements. 

the deerep/nf r^VS a ^e'ement' die i°caI system of coordinates x, y,, and 
three mZl J, T f } "***to each node. Each node can experiment 
DOF and th" S'i W° ls^acements anc* one rotation; thus a node has three 
displacement JT* 11 sLx D°F" The^ are refeiTCd a* generalized 
displacements, and denoted by a vector of six components {cjl}. 

y\ 

Figure 1. Bar element and local coordinate system 
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Applying any of the variational principles, i.e. the principle of virtual 
work, the equation relating the generalized member nodal forces {fl} and the 
generalized member nodal displacements {ql} may be obtained as follows: 

[k!\ {ql} = {/?} (1) 

where [kl] is the member stiffness matrix in the local coordinate system, and 
is denoted by equation (2) 
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and 
L = member length 
A = cross sectional area 
I = moment of inertia of the cross section about the z axis 
E = Young's modulus of the bar material 

In order to assemble the contribution of a member to the global response 
°I* the structure, the member's behavior has to be expressed in the global 
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coordinate system: the generalized member nodal forces {fg}, the generalized 
member nodal displacements {qg}, and the member stiffness matrix [Arg] have 
to be rotated from local to global coordinates. Denoting by xs and y the 
coordinates of the start node of the clement, and xe and ye the coordinates of 
t e end node of the member (fig. 2), the rotation is performed as follows: 

Figure 2. Bar element and global coordinate system 

W) {q/} = {/?} 

[kg] = [Tf [kl] [7] (4) 
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\qi} = [7] {qg) (5) 

{/» = [T\ \fg) (6) 

where: 
[£g] = member stiffness matrix in the global coordinate system 
[T\ = transformation matrix, to rotate from global coordinate 

system to local coordinate system (eq. 7) 

and <t> is the angle of inclination of the local coordinate system in respect to the 
global coordinate system. The expression of matrix [T\ as a function of the 
member nodes coordinates can be derived with equations (8) to (14). 

Once the element stiffness matrix is rotated, it can be assembled to the 
structure stiffness matrix. A general form of the system equilibrium equation 
is obtained by assembling the contribution of each element to the global 
structure response. 

cos<|) sin<{> 0 0 0 0 

- simj) coscj) 0 0 0 0 

0 0 1 0 0 0 
0 0 0 cos(j) sin<4> 0 

0 0 0 - sincj) coscj) 0 

0 0 1 0 0 1 

(7) 

Ax = xe - xt (8) 
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Ay = ye - ys (9) 

where 

[KS\{Q) = \F) 

L = \ /Ax2  + Ay2  

(14) 

(10) 

cos (J) = A = — 
L ( id  

sin c{) = p = Ap 
L (12) 

[7] = 

A 0 0 0 0 
A 0 0 0 0 

0 0 1 0 0 0 
0 0 0 A n 0 
0 0 0 A 0 
0 0 0 0 0 1 

(13) 

[KS] 
{Q) structure stiffness matrix 

vector of generalized nodal displacements 
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(displacements and rotations) 
{F} = vector of generalized nodal loads (forces and 

moments) 

The possible nodal movements are known as the degrees of freedom of 
the structure (DOF). In order to introduce the boundary conditions efficiently, 
it is recommended to enumerate the DOF according to the following 
procedure: 

a. Enumerate the nodes of the structure 
b. Enumerate (in a correlative way) only the DOF that are free to move, 

shifting from the first node to the last node in an ascending order, 
considering first the movement in the x direction, then the movement 
in the y direction, and last the rotation 

c. Repeat step b) enumerating the DOF that are restrained by supports 
(boundary conditions). 

in this way, the following partition of the stiffness matrix may be performed, 
as equation (15) shows. 

m [K/s] 
[Ksf\ [Fss] 

(15) 

where: 
{QJ) = generalized displacements that are "free' to move 

(unknown) 
{Qs} = generalized displacements that are "supported or 

restrained (known). In general they are zero; but may 
be different from zero to consider support settlement 

{Ff) = generalized applied nodal loads, or external actions 
(known) 

{Fs} = generalized nodal loads related to the supports, or 
reactions (unknown) 
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According to this partition, the solution of the problem is performed 
in two stages: 

a. Applying equation (16) to obtain the unknown displacements m 
b. Applying equation (17) to obtain the support reactions 

{Fs} 

IW (Oft = ~ [Kfs] {{Qs} (16) 

{Fs} = [KsJ] {Qs} + [Kss] {Qs} (17) 

Once the nodal displacements are known, they can be used to obtain the 
member end forces by multiplying the member stiffness matrix by the 
corresponding member end displacements. Further comments on the stiffness 
method approach are presented within the implementation of the MathCad 
problem solution 

Case study 

The objective of the following problem is to analyze the framed structure 
shown in figure 3 by means of the stiffiiess method. All the members have the 
same material and section properties. The structure is subjected to punctual 
loads, and to a support settlement (support B settles 1 in). 

The problem is solved in a step by step approach in order to show how the 
me™ er stiffi*ss matrix is computed and how it is assembled in the global 
sti ness matrix. The first step in the solution process is to enumerate the 
nodes and the members, as shown in figure 4. 
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8  K  i p s  A  =  3  0  0  i n 2  

I  =  5 0 0 0  i n 4  

E  =  2  9 0 0 0  K  s i  

6  f t  •  5  f t  •  5  f t  6  f t  '  

Figure 3: Frame geometry, properties, and applied load 

(T) Node Number 

C E  M  e m b e r  N u m b e r  

© m <D m © 

Figure 4. Node and member identification 

Once the nodes are identified, the following step is to enumerate the nodal 
degrees of freedom (DOF). The frame has five nodes, totaling 15 DOF. Eleven 
OOF are free to move and four DOF are restrained by support conditions, as 
figure 5 shows. 
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Y 

Figure 5: DOF identification 

Solution implementation within MathCad 

mmZIfaf S0^t'0n. dle problem is implemented in MathCad nunx 
is spnarnf0^3 environment- I" order to clarify the implementation, each s 
commpnfc6 m Part*cu'ar section, and text boxes with headings i 
~ r !n' ded t0 guide the reader- A list of the sections used 

structure the solution process. 

I. Model description 

m ^atrlCeS initiaIizi«ion and definition 

IV. Stiffness martx pa™ Pr°CeSS 

v. Vector of generalized loads 
VL Vector of nodal displacements 

vrrr of suPPort reactions 
HI. Vector of member end forces 
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I) Model description 

1.1. General material and section data 

^4 =300 7=5000 £'=29,000 ( 1 8 )  

where A is the area (in2), I is the inertia (in4) and E is the modulus of elasticity 
(Ksi) 

12. Matrix of nodal coordinates 

JVC = 

0 0 

6 8 
11  8  

16 8 

22 0] 

(19) 

mm 

CD 
r 
mm 

rS 
p ns 
1° 

» 

?c 
J"0 
1 -o 
3 33 

where 

NC(i,l) = x coordinate of node i (in) 

NC(i,2) = y coordinate of node (in) 

1-3. Matrix of member connectivities 

Where 
MC(i, 1) = start node of element i 
MC(i,2) = start node of element i 
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MC = 

1 2 

2 3 

3 4 

4 5 

1.4. Matrix of nodal degreee of freedom 

NDOF:= 

12 13 1 

2 3 4 

5 6 7 

8 9 10 

14 15 llj 

(20) 

(21) 

Where 

NDOF(i,l) = translation^ DOF in the x direction of node i 

NDOF(i,2) = translations DOF in the y direction of node i 

NDOF(i,3) = translational DOF in the z direction of node i 

FDOF := n > TDOF := 15 (22) 

DOF free to move and total numbers of DOG (free + restrained) 
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II. Matrices initialization and definitions 
II.l Initialization of variables 

t'C . -0 
^TDOFJDOF • u 

where 

^ffpDOFFDOF • ® 

KfSFDOFJDOF-FDOF • ® 

TDOF - FDOFfDOF ' ® 

fTvv • =0 
TDOF - FDOF, TDOF - FDOF ' 

F =0 
FDOF • 

USTDOF - FDOF " ® 

Ks = complete structure stiffness matrix 
F = vector of generalized nodal loads 
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Us = vector of support displacement 

H 2 Member sttifness matrix in local coordinates and rotation matrix 

W&AJ£) : = 

r ^ 0 0 0 
L  

0 

0 12 *1 
L3 

6*1 
L 2  

0 -12— 
L 3  

6H 
L 2  

0 
z2 

4 *1 
L  

0 -6^ 
L 2  

7 *1 
L  

_ E  •  A  0 0 E  - A  .  
L  

0 0 — ° 
0 

0 -12*£ 
/.3 

- 6 *1 
L2 0 12— 

L 3  
- 6 *1 

L 2  

0 4H 0 -6^ 
L 2  

4*' Z.2 L  
0 -6^ 

L 2  
4 

L  

(30) 

m,p) : 

A 0 0 0 0 
A 0 0 0 0 

J°  0 1 0 0 0 
0 0 0 A °l 
0 0 0 ri -A 

0 
0 0 0 0 0 1 

(3D 
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III Member stiffness matrices and assembling process 
III.l Member 1 

NM : = 1 

Ni -'MCw. i 

Nj : =MC 
NM,2 

Ax -.-NC.m -NCm 

Ay :-NCm -NCm 

L yj&x2 + Ay 

X 
L 

. Ay 
'l-=-

219  
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where 

Ni = start node 

Ax=72, Ay=96, Z=120, A =0.6, p=0.8 (40) 

Nj = end node 

Ax = x distance from start node to end node 

Ay = y distance from start node to end node 

L = member length 

A, p = member orientation 

W.EAJJL) ; = 

725I°4 0 0 -7.25-104 0 0 
0 1.00694-10' 6.04167-104 

0 6.041674-104 4.83333-106 

-7.25-104 o 
0 

0 -1.00694-101 6.04I67-104 

0 -6.04167-105 2.41667-10° 
0 7.25-104 0 0 

-1.00694-103 -6.04167-104 0 1.00694-101 -6.04167-104 

0 -6.04167-104 4.83333-10° 0 6.041674-104 2.41667-10° 

(41) 

KG ; =T((K\i)-KL(EAJJLyT(X^)T (42) 

KG is the member stiffness matrix in global coordinates 
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KG := 

2.67444-10* 3.43167*10* -4.83333-10* 

3.43167-10* 4.67625-10* 3.625-10* 

-4.83333-10* 3.625-10* 4.83333-10* 

-2.67444-10* -3.43167-10* 4.83333-10* 

-3.43167-10* -4.67625-10* -3.625-10* 

-4.83333-10* 3.625-10* 2.41667-10* 

-2.674444-10* -3.43167-10* -4.83333-10* 

-3.43167-10* -4.67625-10* 3.625-10* 

4.83333-10* -3.625-10* 2.31667-10* 

2.67444-10* 3.43167-10* 4.83333-144 

3.43167-10* 4.67625-10* -3.625-10* 

4.83333-10* -3.625-10* 4.83333-106 

(43) 

Identification vector, showing the correspondence between the six- member 
DOF and the structure DOF 

i =1.3 

1DV; : =NDOF, Ni,i 

7DF,3 : =NDOFNj i 

(44) 

(45) 

(46) 

IDV : = 

12 
13 

1 

2 

3 

4 

(47) 

Assembli ing process 

i :=1..6 (48) 
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J :=1.6 (49) 

^IDVJDVj •'= ^IDV^DVj + KGij (50) 

Up to this moment, the structure stiffness matrix (KS) has the following 
2  I  I  *  l 5 l 6 l 7 | 8 | 9 | l  l l  I  1  



Rev. Univ. Politec. P.R., Vol. 6 Num. 2 

DI.2 Member 2 

NM :=2 (52) 

NI : =MCNM I (53) 

NJ : =MCNM2 (54) 

AX :=NCM - NCM (55) 

4Y :=NCN.2 - NCM (56) 

L := \JBX2 +AY2 (57) 

X (58) 
L 
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_ Ay 
»  : = T  ( 5 9 )  

KG :=7-((A,M) • KL(EAJK) ' T(\,»)T (60) 

/  = 1 . 3  ( 6 1 )  

IDV.  • -  ̂ DOFm (62) 

NDOFm (63) 

' : = l 6 (64) 

j :=1..6 (65) 

^idvjdv, •' = KSIDV/JDVj + (66) 

224 



Rev. Univ. Politec. P.R., Vol. 6 Num. 2 

DI.3 Member 3 

NM:=3 (67) 

Ni : -MC  ̂ (68) 

Nj:=MCm2 (69) 

Ax :=NCm - NCm (70) 

Ay : -NCm NCNi2 (71) 

L :=^Ax2 +Ay2 
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(73) 

i :=1..3 

IDV.+3 :=NDOF„, 

i :=1..6 

7  = 1 - 6  

226 

(74) 

ATG :=7((A,p) • KL(EAJJL) • 7"(A,fi)T (75) 

(76) 

/Z)^ (77) 

Vy;/ (78) 

(79) 

(80) 
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^IDVJDVJ := KSlDVJDVj + KGiJ 

Member 4 

NM :=4  

Ni: =MCNMI 

Nj :=^GNM,2 

Ax :=NCm- NCm 

Ay -.=NCm - NCm 

L :=y/Ax2 +Ay2 
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NM :=4 (82) 

Ni. =MCmu j (83) 

Nj -.=MCm2 (84) 

tVx.=NCm-NCm (85) 

Ay - NCn.2 (86) 

L :=v/Ax2 +Ay2 

A. (88) 
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KG :=r((A,n) . KL{EAU) ' HKv)T 

i : = 1..3 

IDVj :=NDOFNi . 

1DVm : =NDOFNji 

i : = 1..6 

j  : = 1  - 6  

^IDVJDVj :=^IDVpIDVj + KGLj 
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IV) Stiffness matrix partition 

i : = 1 ..FDOF (97) 

J : = 1 ..FDOF (98) 

(99) 

j : =FDOF + X..TDOF (100) 

KfSij - FDOF '• =K^iJ 

i:=FDOF + I..TDOF (102) 

j : = 1 ..FDOF (103) 

230 



Rev. Univ. Politec. P.R., Vol. 6 Num. 2 

- FDOF. j '• KSj j 

j : =FDOF + I..TDOF 

^SI - FDOF J - FDOF ' =^IJ 

\) Vector of generalized loads 

F2 :=20 

F6 : = - 8 

UsA :=0 

F :=F - Kfs • Us 

(104) 

(105) 

(106) 
05 
mm 

W r mm 
0 

m 

(107) 0 

(108) 

(109) 

(HO) 
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VI Vector of nodal displacements 

Uf:=Kff l  F (  

1 

U f :  =  

-1.35066(10) 

0.0.00817 

-0.00601 

1.65786(10) 

0.00807 

-0.00128 

1.27596(10)-4 

8 0.00798 

9 0.00569 

0 5.80486(10)"5 

1 -1.51436(10)_4j 

(112)  

VII Vector of support reactions 

R := Ksf-  Uf + Kss - Us (113)  
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R := 

-6.27198 

-3.27273 

-13.72802 

11.27273 

(114) 

1 III V ector of member end forces 

i :=1.. FDOF (115) 

V, -W (116) 

i : = 1.. TDOF - FDOF (117) 

* FDOF '• USi (118) 

VIII. 1 Member 

NM : = 1 (119) 
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Nl : MCmi,\ (120) 

N j  : ( I 2 l )  

Ax : =NC, r . ,  -  JVC A),l Ni,l (122) 

Aj :=AC„.2 - NCm m 

L := ]/Ax2  + Ay2  (124) 

T  ( I 2 5 )  

M" L (126) 
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KG :=7U,n) • KL{EAJJL) • (127) 

/:=1..3 (128) 

IDVj := NDOFNi . (129) 

IDVj+y =NDOFNJj (130) 

/:=!..6 (131) 

IM, := (132) 

.FMG := AG • (I33) 

Then, FMG is the vector of nodal end forces in global coordinates 
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FMG : = 

-6.27198 

-3.27273 

1.27898(10)"13 

6.27198 

3.27273 

366.47324 

(134) 

FMLG := T(A,.p)r • FMG (135) 

and FML is the vector of nodal end forces, in local coordinates. 

FML : = 

-6.38137 

3.05394 

1.27898(10)"13 

6.38137 

-3.05394 

366.47324 

(136) 

Conclusions 

imP'— within MathCa 
of sinrole fnmpW st r- s lmplementation allows (he analysi 
beSSr * * "ew Stmcture'lhc model descriPlion has' 

or nnatCS' activities, among others). Ther 
contribution of each member may be added through a 'copy-paste 
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procedure of the member stiffness matrix and assembling process, only 
actualizing the member identification number after each 'paste' editing 
operation within the computation sheet. 

A major advantage of this implementation is that the student can actually 
see' the whole process: the member stiffness matrix in local and global 

coordinates; how each element contributes to the global structure stiffness 
matrix; how the partition of the matrix is performed to incorporate the 
boundary condition; how the member end forces are obtained once the nodal 
displacements are known. 

This approach has been found to be useful to introduce the mechanical 
aspects of the stiffness method, as a special case of the more general finite 
clement analysis method. Special conditions such as support settlement or 
clastic foundations can be easily incorporated in the analysis process, and 
constitute a good analytical case of study to be implemented by the students. 
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