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Abstract

This article presents a case study of a simple planar framed structure to
show an original implementation of the stiffness method of structural analysis
““.hm MathCad numeric computation environment. This approach was used
1o mtroduce undergraduate students to the finite element method basis through
the study of bar elements. As MathCad is a graphic environment, the student
5 able to ‘see” the clements of the stiffness matrix, the effect of rotating from
local to global coordinates, the assembling process of the structure stiffness
matrix, and the decomposition used to introduce the boundary conditions. This
ipproach has proven to be useful and didactic.

Sinopsis

lmpl'al.ltacién del método de rigidez en el ambiente de computacién
umérico de MathCad

Este articulo presenta el estudio de un pértico plano simple para mostrar
tna implantacién original del método de rigidez para analisis estructural en el
¢ilomo de computacién numérica provisto por MathCad. Este procedimiento
seutilizy para familiarizar un grupo de alumnos subgraduados con las bases
del método de elementos finitos a través del estudio de clementos de barrfa.
Como MathCad es un ambiente gréfico, los estudiantes pueden ‘ver’ la matriz
e rigidez de los elementos, el efecto de rotar de coordenadas locales a
“ordenadas globales, el proceso de ensamblado de la matriz de rigidez global
& la estructura y la descomposicién que se realiza para presentar las
condiciones de contorno. Este enfoque ha demostrado ser muy util y didéctico.
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Introduction

The stiffness method for the analysis of framed structures could be seen
as a special case of the more general finite element method (FEM). Thc
procedures used to derive the clement stiffness matrix for any other !’mpc
clement can be followed to obtain stiffness matrix or bar elements, which
result in the same matrix that can be obtained from the direct stiffness method
analysis. The peculiarity is that the shape functions used to interpolate the
displacements within the clement are the exact solution for the bar clcmC{ll
(considering small displacements, and that the material is in the linear clastic
range). One consequence of this situation is that in structures composed by bar
clements the accuracy of the solution is not improved if the bars are
subdivided in several finite elements.

Figure 1 shows a bar element, the local system of coordinates x, v, and
the degrees of freedom (DOF) related to each node. Each node can experiment
three movements: two displacements and one rotation; thus a node has thrcc
DOF, and the element has six DOF. They are referred as generalized
displacements, and denoted by a vector of six components {¢/}.

Figure 1. Bar element and local coordinate system
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Applying any of the variational principles, i.c. the principle of virtual

work, the equation relating the generalized member nodal forces {f1} and the
generalized member nodal displacements {ql} may be obtained as follows:

(k1] iglt = {1} (N

where [£7] is the member stiffness matrix in the local coordinate system, and
is denoted by equation (2)
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= member length

cross sectional arca :
moment of inertia of the cross section about the z axis
= Young’s modulus of the bar material
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In order to assemble the contribution of a member to the global response

of the structure, the member’s behavior has to be expressed in the global
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coordinate system: the generalized member nodal forces {f2}, the generalized
member nodal displacements § 98}, and the member stiffness matrix [kg] have
to be rotated from local to global coordinates. Denoting by x, and y the
coordinates of the start node of the clement, and x, and y, the coordinates of
the end node of the member (fig. 2), the rotation is performed as follows:

X
A} e

Figure 2: Bar clement and global coordinate system
(k] igl} = {m} 3)

kgl = 171" (k1] [7] )
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lgh = [1] igg) )

v = 11 g (©)

[kg] = member stiffness matrix in the global coordinate system
[7]1 = transformation matrix, to rotate from global coordinate
system to local coordinate system (eq. 7)

cosp snp 0 0 0 O
-sinp cosp 0 O LA |
0 0

i) S Sl
[7]

7
0 cos¢ sinp O 0

0 0
0 0 0 -sind cosp 0
ot R G R

and ¢ is the angle of inclination of the local coordinate system in respect to the
global coordinate system. The expression of matrix [7] as a function of the
member nodes coordinates can be derived with equations (8) to (14).

Once the element stiffness matrix is rotated, it can be assembled to the
Structure stiffness matrix. A general form of the system equilibrium equation

is obtained by assembling the contribution of cach element to the global
Structure response.

Ax = x, - x, @®)
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Ay =igo e o )

where

KSHO} = 7 (14)

L = A% + Ay2 (10)

all's

cos ¢ = A (11)

(12)

&

sin ¢ = p

(13)

I

(71

>» o o o
S oie & &

|
=
LAt 8 T - R

L -~ TR . R
©C O © -~ o o

(=]
il

[KS] = structure stiffness matrix
{0} - vector of generalized nodal displacements
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(displacements and rotations)
{F} = vector of genecralized nodal loads (forces and
moments)

The possible nodal movements are known as the degrees of freedom of
the structure (DOF). In order to introduce the boundary conditions efficiently,

it is recommended to enumerate the DOF according to the following
procedure:

a. Enumerate the nodes of the structure

b. Enumerate (in a correlative way) only the DOF that are free to move,
shifting from the first node to the last node in an ascending order,
considering first the movement in the x direction, then the movement
in the y direction, and last the rotation

¢ Repeat step b) enumerating the DOF that are restrained by supports
(boundary conditions).

In this way, the following partition of the stiffness matrix may be performed,
a5 cquation (15) shows.

[[Km [KfSI] {g} § {Iff} e
[Ksf] [Kss]| 1Os 0

where:
{0ff = generalized displacements that are ‘free’ to move
(unknown) ’
{Os} = generalized displacements that are ‘supported’ or

restrained (known). In general they are zero; but may
be different from zero to consider support settlement

{Ff} = generalized applicd nodal loads, or external actions
(known)
{Fs} = generalized nodal loads related to the supports, or

reactions (unknown)
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According to this partition, the solution of the problem is performed
in two stages:

a. Applying equation (16) to obtain the unknown displacements
on

b. Applying equation (17) to obtain the support reactions
{Fs}
(K7 of = (B - [Kfs) {Os) (16)
{Fs} = [Ksf] {Os) + [Kss] (Os) (17)

Once the nodal displacements are known, they can be used to obtain the
member end forces by multiplying the member stiffness matrix by the
corresponding member end displacements. Further comments on the stiffness
method approach are presented within the implementation of the MathCad
problem solution

Case study

The objective of the following problem is to analyze the framed structurc
shown in figure 3 by means of the stiffness method. All the members have the
same material and section properties. The structure is subjected to punctual
loads, and to a support settlement (support B settles 1 in).

The problem is solved in a step by step approach in order to show how the
member stiffness matrix is computed and how it is assembled in the globs!
stiffness matrix. The first step in the solution process is to enumerate the
nodes and the members, as shown in figure 4.
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I= 5000 in*

8 Kips A = 300 in?
E = 29000 K si

Figure 3: Frame geometry, properties, and applied load

® Node Number
[L] Member Number

O @m®@Em ®

Figure 4. Node and member identification

Once the nodes are identified, the following step is to enumerate the nodal
degrees of freedom (DOF). The frame has five nodes, totaling 15 DOF. Eleven
DOF are free to move and four DOF are restrained by support conditions, as
figure 5 shows.
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Figure 5: DOF identification

Solution implementation within MathCad

The solution of the problem is implemented in MathCad nu};nclflc
computational environment. In order to clarify the implcmgntaIIOII, cach's :ig
Is separated in 3 Particular scction, and text boxes with hgadmgs cda E
comments are included to guide the reader. A list of the sections us
structure the solution process.

L. Model description

II. Matrices initialization and definition

IIl. Member stiffness matrices and assembling process
IV. Stiffness matrix partition

V. Vector of generalized loads

VL. Vector of nodal displacements

VIL Vector of Support reactions

VIIL. Vector of member end forces
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I) Model description

L1, General material and section data

A=300 I=5000 £=29,000 (18)
where A is the area (in), L is the inertia (in*) and E is the modulus of clasticity
(Ksi)

1.2. Matrix of nodal coordinates

(19)

o)}
.OOOOOOC

where

NC(,1) = x coordinate of node i (in)
NC(i,2) =y coordinate of node (in)

1.3, Matrix of member connectivitics

Where

MC(i,1) = start node of clement i
MC(i,2) = start node of clement i
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2
3
MC = 3 (20
3s4
4 5
1.4. Matrix of nodal degreee of freedom
12213 1]
2 434
NDOF :=|5 ¢ Fi 21
8 9 10
14 15 11]
Where
NDOF(,1) = translational DOF in the x direction of node i
NDOF(i,2) = translational DOF i the y direction of node i
NDOF(i,3) = translational DOF in the z direction of node i
FDOF := 11, TDOF := 15 (22)

DOF free to move and total numbers of DOG (free + restrained)
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11, Matrices initialization and definitions
IL1 Initialization of variables

Where

KS ok mor =0

Kffepormor +=0

Kfs mporrpor-ror :=0

Ksfipor - mormor :=0

KsS1por - mpor , TDoF - FDOF *=

Frpor =0

Us por - mor - =0

Ks = complete structure stiffness matrix
F = vector of generalized nodal loads
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Us = vector of support displacement

IL.2. Member sttifness matrix in local coordinates and rotation matrix

[ B4 0 o -E4 0
I3 L
0 1225 gEIVRGINL a8t Lk
L3 L? A
0 6%’ 4% 0 -6E—;I 25Lf
KLEALL) := : : i (30)
2 L
0  -12Eli gBl i Bl o=
13 1‘2 L! Lz
0 gLy g eEL LEI
L2 /A L? & }
¥ S 0.0 80
TR W i B 0 0
0 ‘10 0 0
TA.p) := G
R S
000 gt
0000 0
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[l Member stiffness matrices and assembling process

[IL.1 Member 1
NM :=1

Ni :=MC

NM1

N :=MCy,,

Ax :=NCy,, -NCy,,

Ay :=NCNJ,2 -NC N2

5 -Ax
I

_Ay
-

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

- -

= 8.8
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where
Ni = start node
Ax=72, Ay=96, L=120, 1=0.6, p=0.8 (40)
Nj = end node

Ax = x distance from start node to end node
Ay =y distance from start node to end node
L = member length

A, p = member orientation

7.25-10* 0 0 ~7.25-10* 0 0
0 1.00694-10° 6.04167-10* 0 -1.00694-10° 6.04167-10°
: A .83333- 0 -6.04167-10° 2.41667-10°
KUEALL) - 0 6.041674:10* 4.83333-10° (41)
~7.25-10¢ 0 0 7.25-104 0 0
0 ~1.00694-10° -6.04167-10* 0 10069410 -6.04167-10*

0 6.041674-10' 2.41667-10¢ 0 -6.04167-10 4.83333-10°

KG =AW KIEALL)T(A )T (42

KG is the member stiffness matrix in global coordinates
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26744410°  3.43167-10' -4.83333-10° -2.674444-10°
343167100 46762510  3.62510'  -3.43167-10¢
P -483333-10'  3.62510'  4.8333310°  4.83333-10*
-L6744410° -343167-10' 48333310  2.67444-10°
-34316710° -4.6762510° -3.625-10°  3.43167-10
-4.83333-10'  3.62510' 241667-10°  4.83333-10*

dentification vector, showing the correspondence between the six- member

DOF and the structure DOF

1:=1.3
IDV, :=NDOF, Nid

IDV,,, :=NDOFy;,

12|
13
IDV := :
2
3
4 d
ASS(?mbling process
i:=1.6
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-3.43167-10*
-4.67625-104
-3.625-10*
3.43167-10*
4.67625-10
-3.625-10*

-4.83333:10*
3.625.10
2.3166710°
4.83333:14°
-3.625:10
4.83333-10°

(43)

(44)
(45)

(46)

(47)

(48)
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j =16 (49)
KSzDV,zDVJ -= KS’IDV,JDV/ + KG,, (50)

Up to this moment, the structure stiffness matrix (KS) has the following elements:

1 2 3 4 516]17[8[9]1 1 12 13
0l1

11 4.833 (10)° | 4.833 (10)*|-3.625 (10) * 2417(10)° JoJofofofo fo]o | 4.8333 (10)[ 3.625 (10
2 | 4.833(10)*] 2.674 (10)* |-3.432 (10)* 4.833(10)* |Jofo]ofo]o]oo|-2.674 (10" |-3.432(10
3 [-3.625(10)*|3.432 (10)* | 4.676 (10)* |-3.625 (10)*[0 [0 [0 |0 [0 [0 [0]-3.432 (10)* | 4.676 10
4 [2417(10)° | 4.833 (10)* |-3.625 (10) * 4.833 (10)° jofoo]olo]ofo|-4.833 (10)*| 3.625 (10
5 0 0 0 0 olojofofofofo 0 0
6 0 0 0 0 olofolofojolo 0 0
7 0 0 0 0 olofolojalofo 0 0
8 0 0 0 0 olofojofolofo 0 0
9 0 0 0 0 ojofofojofofo 0 0
10 0 0 0 0 ojofololololo 0 0
11 0 0 0 0 ofojolojolo]o 0 0
12]-4.833(10)*| -2.674 (10)* [-3.432 (10)*| 4.833 (10)*foJofofofofofo| 2.674 10y | 3.432 10
1313.625(10)* [ 3.432 (10)* -4.676 (10)* [3.625 (10)* JoJofo|o]o oo 3.432(10)* | 4.676 (10
14 0 0 0 0 ofofolofofofo 0 0
15 0 0 0 0 ofofofofo o’ol 0 0

222




Rev. Univ. Politéc. P.R., Vol. 6 Num. 2

2 Member2

Ni 5=MCW,1

Ax :=NCy,, - NCy,

Ay :=NCM,,2 - NCM2

L := JAx? +Ay?

223
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Ay
B v

KG :=I((.p) - KUEALL) - T(hu)T

IDV, := NDOF,,,

DY, := NDOF,,

KSJDV,IDV, g KS}DVJDr/j + KG,,

224
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3 Member 3

NM =

Ni : =Mcw,1

Nj:=MCy,,,

Nil NCNu

Ay :=NCy;, - NCy;,

L :=/Ax? +Ay?

225
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'=£
Az = (73)
.4y
K= (74)
KG :=I((A.p) - KLEALL) - T )7 75)
i:=1.3 (76)
1Dy, :=NDOFMJ (77)
DV, :=ND0FM.’ . (78)
i:=1.6 (79)
J:=1.6 (80)
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IDV,IDV} 3 KS’]DV,JDI«;

4 Member4

NM :=4

Ni: =MC,,,,

Nj =MCyp>

Ax =N C“Y]‘* 1 It N C.Vl,l

Ay :=NCy,, - NCy,

L :=W

227
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NM :=4 (82)

Ni: =MCNM.1 (83)

Nj :=MCM1,2 (84)

Ax :=NCy,, - NCy,, (83)

Ay :=NCy,, - NCy,, (86)

P e g 67
Ax

A im— 88

i3 (88)
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Ay
Mt

KG :=T((p) - KEALL) - TO.w)"

IDV, :=NDOF, Nii

IDV,; :=NDOF,,

KSIDV,IDV, :=KSIDV,IDVI + KG,;

229
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IV) Stiffness matrix partition

i :=1.FDOF
j :=1.FDOF

Kf,, :=K5,

J =FDOF + 1.TDOF

i:=FDOF + 1.TDOF

J :=1.FDOF

230
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Ksf, - wor: ; :=KS,, (104)

j :=FDOF + 1.TDOF

(105)
Kss, _ FDOF j - FDOF 1=KS1J (106)
®
W
o
V) Vector of generalized loads 9'
fm
F, =20 (107) g
c
)
|
]
F, :=-8 (108)
Us, :=0 (109)
F:=F - Kfs + Us (110)
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VI Vector of nodal displacements

Uf =K -
0 I
[ ~1.35066(10)"
2 0000817
3 -0.00601
4 1.65786(10)°
5 0.00807
sl T
7 1.27596(10)
8 000798
9 0.00569
10 5.80486(10)"3

11 -1.51436(10)4

VII Vector of support reactions

R:=Ksf- U + Kss - Us

232
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-6.27198
-3.27273
-13.72802
11.27273

VIl Vector of member end forces

i :=1.. FDOF

i :=1.. TDOF - FDOF

i + roor -=US;

VI Member 1

NM =1

21
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Ni :=MC,WYl

Nj :=MCAM2

Ax :=NCAJ; e NCM’l

Ay :=NCM';2 = NCN:,Z

L := Ax? + Ay2

A
L

.2 Ay
” L
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(122)

(123)
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KG :=Thp) - KIL(EALL) - TO.w)"

ii=1.3

IDV, := NDOFM,,.

IDV,,.:=NDOF,,

i:=1.6
UM, := Upy,

MG := KG - UM

Then, FMG is the vector of nodal end forces in global coordinates

(127)

(128)

(129)

(130)

(131)

(132)

(133)
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[ -6.27198
-327273

1.27898(10)™ 13
MG = i (134)
6.27198
3.27273

366.47324 |

FMLG := T(,.0)7 - FMG (135)

and FML is the vector of nodal end forces, in local coordinates.

[ -6.38137
3.05394

~13
M - |1:27898(10) 136
6.38137
-3.05394

366.47324 |

Conclusions

The stiffness method has been successfully implemented within MathCad
fumeric computational environment. This implementation allows the analysis
of snmplet framed structures. For a new structure, the model description has to
be actualw_od (nodal coordinates, member connectivities, among others). Then,
the contribution of each member may be added through a ‘copy-paste’
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procedure of the member stiffness matrix and assembling process, only

actual%zing the member identification number after each ‘paste’ editing
operation within the computation sheet.

A major advantage of this implementation is that the student can actually
see” the whole process: the member stiffness matrix in local and global
wordinates; how each element contributes to the global structure stiffness
matrix; how the partition of the matrix is performed to incorporate the

qudary condition; how the member end forces are obtained once the nodal
displacements are known.

This approach has been found to be useful to introduce the mechanical
aspects of the stiffness method, as a special case of the more general finite
clcm;m analysis method. Special conditions such as support settlement or
°|351{0 foundations can be casily incorporated in the analysis process, and
constitute a good analytical case of study to be implemented by the students.
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