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ABSTRACT 

An evolutionary algorithm (EA) approach is 
used in the development of a test vector generation 
application for single and multiple fault detection 
of growth faults in Programmable Logic Arrays 
(PLA). Three basic steps are performed during the 
generation of the test vectors: crossover, mutation 
and selection. The genetic operators are applied to 
the CNF-satisfiability problem for the generation of 
test vectors for growth faults. Once crossover and 
mutation have occurred, the new candidate test 
vectors with higher fitness function scores replace 
the old ones. With this scheme, population members 
steadily improve their fitness level with each new 
generation. The resulting process yields improved 
solutions to the problem of the PLA test vector 
generation. 

SINOPSIS 

Por medio de un algoritmo que evoluciona 
(Evolutionary Algorithm; EA), se desarrolla una 
aplicacion que genera vectores de prueba para la 
deteccion de fallas de crecimiento multiples y 
sencillo en Arreglos Logicos Programables 
(Programmable Logic Arrays; PLA). Los 
algoritmos de evolucion son unos procedimientos 
de busqueda v optimizacion que encuentran su 
origen e inspiracion en el mundo biologico. En 
este escrito se aplican los operadores geneticos al 
problema de satisfiabilidad-CNF en la generacion 
de vectores de prueba para las fallas de 
crecimiento. CNF tiene varias ventajas. No hay 
dependencias entre "bits". Cualquier cambio 
puede resultar en un vector legal (o que hace 
sentido) que puede ser un "minterm" o un 
"maxterm". Por lo tanto, podemos aplicar 
mutaciones y "crossover" sin la necesidad de 
decodificadores o algoritmos reparadores. La 
operacion de "crossover" no utiliza "lookups" o 

"backtracking" como lo utilizan los operadores 
que han sido utilizados previamente en la 
generacion de pruebas de PLA. 

I- INTRODUCTION 

PLA testing has attracted the attention of many 
researchers in recent years [1, 2]. Genetic and 
evolutionary algorithms based solutions have been 
proposed [3, 4, 5, 6] for sequential circuits. 
However, PLA testing based on genetic and 
evolutionary algorithms is in its earliest development 
[7]. 

Algorithms proposed in [8] formulate the PLA 
test generation by using the sharp (T) operation. 
The T operation is widely used for logic 
manipulation algorithms (ESPRESSO II). Several 
other algorithms have been also proposed for PLA 
testing using the T operation, but they tend to be 
computationally expensive. A major disadvantage of 
this operator is that backtracking is necessary when 
a test cannot be found. The computational 
overheads required by backtracking can be 
prohibitive. Bose [9] proposed an algorithm, using 
the T operation for extra devices that utilizes the 
Quine-McCluskey method for testing missing 
devices. The memory requirements for this 
algorithm rise exponentially as PLA size increases. 
An algorithm reported in [10] assigns a proper logic 
value in the specified inputs of a potential vector. 
The aim is to achieve path sensitization by 
deselecting product lines connected to output 
functions. The latter however, may fail to find a test 
even if one exists. 

Smith [11] suggests the simplification of the 
algorithm by generating a test for every fault. This 
results in considerably larger test vectors. Hence, a 
minimal test set is not guaranteed. One of the 
disadvantages in this approach is the backtracking 
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Figure 1: A PLA Schematic 

that could occur when the test is chosen and fails to 
propagate. 

Other approaches have been developed for 
generating a PLA test set. For example, the Design-
for-testability (DFT) uses extra components to 
facilitate the PLA test, making test generation 
unnecessary in some instances. All these methods 
employ additional hardware, which means greater 
costs and potential degradation of PLA 
performance. Clearly, present DFT methods have 
not addressed the problem adequately [12], 

A- BASIC NOTATION AND DEFINITIONS 

The PLA consists of input lines 
(uncomplemented and complemented) and product 
term lines. The intersections between product lines 
and input bit lines or between output function lines 
and product term lines are called crosspoints. Each 
product line is used to realize an implicant (product 
term) of the given function by placing appropriate 
crosspoint devices into what is known as the AND 
plane. Figure 1 shows a simple schematic of a PLA 
implementing the two switching functions: 

f AND_r2)OR(x2 ANDx3) 

fi{x\'x2^x^x4)~{x\ AND A2) OR (a, ANDA2 AND 

This PLA has four inputs (x,, x2, x3, x4), four 
product terms (m,, m2, m3, m4), and two output 
functions (f,, f2). K 

The following definitions apply to the 
discussions that follow. 

Definition 1: Hamming distance: The number of 
bit positions in which two product terms hold non-
don t care values that are different is called the 
Hamming distance, dH. 

For example, in Figure 1 the hamming distance 
between m3 and m4 is two, i.e. these terms differ in 
bit positions Xj and x2. 

< /tui./ ivif/iJt: 
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In testing digital circuits, the most common!' 
considered fault model is the stuck-at fault (i.e., ,wi 
0 or s-a-1). However, because of the PLAN arra< 
structure the stuck-at lault alone cannot adequateh 
model all physical defects in a PLA (13). Therefore 
a new fault class model, known as the crosspoith 
model is used. The unintentional presence 01 
absence of a device in the PLA causes a crosspoint 
fault. ' 

Different types of faults are show n in Figure 1 
The symbols (g-f). (,-/). Ui.A and u,.f) dcno(c (he 

growth, shrinkage, appearance and disappearance 
faults respectively. 

The focus of this paper is on the use of uenetic 
faults f°r the generation of tesl VCCIors grow th 

III- THE GROWTH FAULT 

litera?r°inth,haUlA ™rrespond to the removal of a 
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ON se, H lmpl,cam- A growth fault causes the 
into hi OFF™™?™8' °f 3 fault free PLA to grow 
in a PLA "t • ^ maxIerms)- To detect a fault 
present m TTf' that the PLA ""tpul in the 
the absence onhTfaulfrhT PLA °U'PUt 

fault detection are- Fan/J<r ° requ,remenls for 

Propagation. ' S<-"stnza,ion and Fault 

be sensteedT "h™* faU" in the AND P'ane will 
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"OS m fLA is given by [14]. e 
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Figure 2: Product Term Under Test 

lines connected to the output except the product 
term under test. 

The procedure for deriving the growth test 
vectors is explained with aid of Figure 2. The 
product term is represented by an AND gate of 4 
inputs. A dash in the input lines indicates the 
absence of a device, whereas a circle 'o' in the input 
lines indicates the presence of a device. 

For example, to detect a missing device at Xi of 
the implicant under consideration [1X01], a logic 0 
must be applied to the input xb while the care 
values (at input x3 x4) remain unchanged. Since the 
value of the literal was changed from 1 to 0, then a 
term from this set could detect a fault in the 
uncomplemented bit-line. To detect a fault in the 
complemented bit-line the literal must be changed 
from 0 to 1. 

Now we should be able to sensitize this fault (if 
one exists) at the output of the AND gate under 

consideration. A value 1 at the output of the AND 
gate denotes a fault while the implicant under test 
carries a 0 in the absence of a fault. To generate a 0 
on the product line (required for sensitization of 
growth faults) the input value connected to the 
target growth fault bit-line is toggled to the value 
opposite the value representing the used bit-line. 
The simple PLA of Figure 3 will be used to illustrate 
the test pattern generation for growth faults. 

The function on Table 1 of the sample PLA of 
Figure 3 can be expressed as 

/(x1,x2,x3,x4)= £(0,1,2,4,5,6,9,13) 

The complement function and the fitness for 
each element are also shown on Table 1. 

The above discussion leads to the following 
rules that must be established for the generation of 
test vectors, for growth faults. A growth term stands 

Table 1: Truth Table of the Sample PLA 

Decimal X| x2 x3 x4 / / '  Fitness 
Code 

/ / '  
/(*;) 

0 0 0 0 0 1 0 4 
1 0 0 0 1 0 3 
2 0 0 10 0 4 
3 0 0 11 0 5 
4 0 10 0 0 4 
5 0 10 1 0 4 
6 0  1 1 0  1 0 4 
7 0  1 1 1  0 1 5 
8 10 0 0 0 1 5 
9 10 0 1 1 4 
10 10 10 0 1 5 
11 10 11 0 1 5 
12 1 1 0  0  0 1 5 
13 1 1 0  1  1 4 
14 1 1 1 0  0 1 5 
15 1 1 1 1  0 1 5 
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Figure 3: Sample PLA for Growth Faults 

for the set of extra terms contributed by a growth 
fault. The minterms {[0001], [0101]} are the 
components of the growth term for mt of Figure 2. 
The input X2 is a don't care and can be replaced 
either by 0 or 1. The bits of this unspecified input 
are shown underlined. 

The growth term lfom a given set of product 
terms is derived as follows: 

PROCEDURE 1: 

For each product line m. 

Do ( n  -  l o g : Q )  times 
{ 

Construct a growth term as follows: 

Scan the product term from left to 
right until an unmarked literal is 
found; 

Mark the literal and toggle its 
value from 0 to 1, or from : to 
0 ;  

Leave the other components of the 
product term intact (both literal 
and don't care values). These extra 
terms correspond to the 
term. 

growth 

} 

(n - log2Q) is the number of literals on each 
product term. 

A growth term may have terms in the ON-set 
function (i. e., mintems) and in the OFF-set function 
(i. e., maxterms). The terms in the ON-set function 
fail to select uniquely the product line on which the 
target is located, since it will also select the product 
terms that cover them. Therefore, the fault can not 
be propagated. Furthermore, since a fault can be 
sensitized by a term from the ON-set function, it is 
necessary to delete those terms from the growth 
term. This procedure can be carried out by 
computing the intersection (denoted by (f))) 
between the growth term generated for each 
product with the complement function (OFF-set) [8 
10]. One of the disadvantages in this approach is the 
backtracking that could occur when the test is 
chosen and fails to propagate. 

Another approach is to apply the sharp 
operation (T) between the growth term generated 

for each product term and the ON-set function. 
Bose in [1,9] uses this operation to find terms that 
are not covered by the ON-set function. However, 
terms partially covered by any input product can 
not be eliminated from the growth term without 
eliminating the growth term - an invalid test vector 
may be generated after the Quine-McC'luskey 
method is applied. 

PLATESTGA uses the conjunctive normal 
form (CNF) logical expression, equivalent to the 
complement's function, to derive the test set for 
growth faults. The use of the CNF is supported by 
the De Morgan's theorem [15]. The terms 
complement and OFF-set function are equivalent. 

The generalized form of this theorem states 
that the complement of an expression is obtained by 
interchanging AND and OR operations and 
complementing each variable and constant The 
complement of the function of Table 1 is deriv ed bv 
taking duals and complementing each literal. 

The simple PLA of Figure 3 with the expression 
in its CNF will be used to illustrate the test pattern 
generation. This expression is equivalent to the 
complement function (see Table 1). 

24 de U fawwuidad Votite&tica de Pxento 

f ' { x \ ,  x 2 ,  X , , X4) = (_v; OR A, OR A' ) 

AND (A- OR V^OR.VJ 
AND (A, OR A ( OR A J 
AND (A, OR A, OR A,) 
AND (A, OR v, OR v;) 

The use of CNF has several advantages over 
the two approaches mentioned before. It eliminates 

L'ZT'I °f;rSeCtln8 3 redunda„t growth 
term with a valid candidate test vector and 
consequently eliminates a good test vector Also a 
minimal test set is guaranteed. d 

sn,i -?'tu PPly 3 ge"etic al£or'thm usino the CNF 
vectors for ^ J" generation of test 

determine whethrtherrexistl'rtrmh1'^'11 '° 
for the variable* in the • *rulh assignment 
expression evaluates toP^e!°We° 
assignment of TRUE or FA1 SF < i n an 

the 4 literals of the sample^f^ so^haMh^CNF 
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Figure 4: The Growth Term of the PLA 

expression evaluates to TRUE. The CNF expression 
of the sample PLA is made up of five clauses. That 
will allow us to rank potential bit pattern solution in 
the range of 0 to 5, depending on the number of 
clauses that pattern satisfies. Table 1 shows the 
fitness of each element. When a pattern has a fitness 
of 5, a maxterm of the function is evaluated. A 
growth fault can be detected by this pattern if the 
intersection exists with a term(s) from the growth 
term set. The growth term set is the union (U) of 
the growth term generated by each product term 
(refer to Procedure 1). It is important to understand 
that an undetectable fault can not be detected by any 
pattern. 

It is hard to imagine a problem with better 
suited representation: a binary vector of fixed length 
similar as the PLA physical layout should do the 
job. There are other several advantages, there are 
not dependencies between bits: any change would 
result in a legal (meaning) vector (either a minterm 
or a maxterm). Thus we can apply mutations and 
crossovers without any need for decoders or repair 
algorithms. Even other less frequently used genetic 
operators, such as the inversion (reversing the order 
of bits in the pattern) or exchange (interchanging 
two different bits in the pattern) leave the resulting 
bit pattern a legitimate possible solution [16, 17]. 

The growth term for the sample PLA is derived 
using Procedure 1 (see Figure 4). The fully 
redundant growth terms are underlined. A growth 
term is fully redundant when it is fully covered by 
one or more input product terms. A growth term 
may be partially redundant, i. e., partially covered 
by one or more input product terms. 

PLATESTGA removes any possibility of 
intersecting a redundant term of the growth term 
with the solution found using the GA. That is, the 
offspring generated by the truth assignment using 
the genetic operator is always a valid candidate. 

The following Lemma is necessary to the 
present discussion. 

Lemma I: A maxterm generated with the genetic 
operators with a dn equal to 1 from any product 
term is qualified to detect a missing device fault in 
that product. 

The proof of this Lemma is supported by 
Procedure 1 and the CNF used for the pattern 
generation. 

IV- THE PLA GENETIC ALGORITHM 

The basic genetic algorithm, where P(?) is the 
population of strings at generation t is given below: 

procedure genetic algorithm 

set time t := 0 
select an initial population P(c) 
while the termination condition is not 
me t, do: 
1 
evaluate fitness of each member of 
P(t) ; 

select the fittest members from P(t); 
generate offspring of the fittest pairs 
(using genetic operators); 

replace the weakest members of P(t) by 
these offspring; 

set time t := t-i-1 

Selection alone cannot introduce any new 
individuals into the population, i.e., it cannot find 
new candidate test vectors in the search space. 
Selection is done on the basis of relative fitness and 
it probabilistically eliminates from the population 
those candidate test vectors which have relatively 
low fitness. Recombination, which consists of 
mutation and crossover, imitates sexual 
reproduction. 

Crossover is performed with crossover 
probability Pcims between two selected strings, called 
parents, by exchanging parts of their genomes (i.e., 
encoding) to form two new individuals, called 
offspring. It is implemented by choosing a random 
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Figure 5. The Effect of the Crossover Operation 

point between I and the string length (8) minns one 
I I  A  _  1 1  :  ~  _  i  

operators used in PLA test generation, doesToIuse propagarion^of ^ f™* necessar>' to assure 
lookupsbacktracking. Crossover is both simple SetSTf there X ^ "eXI sl«p is ,o 

efficient. This operation enables the to 1 frnm rh are product ternis with a d„ equal 
evolutionary process rn mnv* ... . the pattern (candidate n,a 

o  w  ^  \ - /  •  » - « . « « V l l t ,  

IL 0 - 1] in the selected pair of parents and 
exchanging the substring defined by that point (i e 
swap the tad portion of the string) to produce new 

pring. That is, all the information from one 
parent is copied from the start up to the crossover 
point, and then all the information from the other 
paren is co^ed from the crossover point to the end 

the offspnng (chromosome). The new 
chromosome thus gets the head r»f > 

occurring alter the third bit. 
The crossover operation, unlike previous 

operators used in PLA test generation, does not use 
lookups or baektraeking. Crossover is both simple 

efficient. This operation enables the 
evolutionary process to move towards optimal 
solutions m the search space. The usefulness of 
crossover is due to the combination of better than 
average substrings coming from different individual 

fl;„ ^U!a;'on.ProbabiIis'irally chooses a bit and 
flips it. Mutation is needed because if selection and 
crossover together search new solutions, they tend 
to cause rapid convergence and there is a danger of 
osing potentially useful genetic materials, such as Os 

of 1 P.aTcular locati™ of the specified values 
of the candidate test vector under evolution. 

The following GA parameters are used for 
testing growth faults of the sample PLA of Figure 3; 

Uniform Crossover Single Cut Point 

' .est!:'is°LTrati0nS 1 UM" 3 ™'maI 

• Size of Population : 8 
• Crossover Probability : 1.0 
• Mutation Probability ; 0.1 

PLATESTGA begins, at generation 0 with a 
population of 8 patterns. For each generation, each 
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individual m the population is calculated as the 
number of clauses that pattern satisfies. A maximum 
value of 5 means that the pattern (candidate test 
vector) matches each clause of the CNF expression 
and consequently it is a valid candidate. For 

ample the fitness lor the pattern J0001J of Table 
I is 3, while the fitness for the pattern 11100J is S 

of missm V00' m particu,ar pcrniil 'he detection 
activated i J" Ienm ,ha[ ^ ™ activated, i. e., product terms that are compatible 
with the pattern under consideration 

Tabl^ lOMIU generated on 
generate the V3 SmCC genelic operators generate the pattern flllO! rhen it a .• i 
candidate valid test This k U 

propagation of the' fault T.neeessary 10 assure 

define if there are product^^,, 

These product term) are rn' °ne li,eraI" 
this pattern detects a L"1'' a"d m5' Tberef°re. 
terms^her/ryMfr dlfT 
Hamming distance away) nT ^ ̂  
detected by the pattern ron nT 'nissl"8 faults 
the aid of Lemma l u 1 (W'th fitness 5> ^ 
fanits detectecTare circled bv^b "l ̂  4" THe 

respective positions in the PLA. ken"'lne ln their 

fitness ofP5. The fittesV me "h"" f,II0J) have a 

more than once A hits mbers can be selected 
reproducuon opet,; ;r.hett"Whee' " "Sed aS the 

fittest members have n r n  .L W3y tlle scicc!lnn of 
being reproduced and n n° '0na"y more chances of 
than once. Tabt 2 Se,eCted 

individual is reproduced OnceX 7^ ™ 
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TABLE2: GENERATION0 

String Population Fitness #of Mate Pool Mate Crossover Mutation 
copies (cross point 

x, X2 X3 x4 /(x 0 reprodu site shown) # P -1 cross 1.0 PmuF 0.1 
ced 

(D 0 0 0 I 3 0 0 I 1 0 1 3 0 0 1 ® 0 ©
 ©
 

(2) 0 I 0 1 4 1 ] 1 1 1 0 6 1 I 1 0 I 1 1 0 
(3) 1 1 I 0 © 1 0 0 i 1 1 0 1 0 0 0 1 0 0 0 1 
(4) 0 0 1 0 4 1 0 1 1 1 0 5 0 1 1 0 0 I 1 0 
(5) 0 1 1 0 4 1 I 1 1 1 0 4 1 1 1 0 1 1 1 0 
(6) 1 1 1 0 © 2 1 1 1 I 0 2 1 © 1 0 1 ® 1 0 
(7) 0 1 1 I © 1 0 1 1 1 I 8 0 1 1 1 0 1 1 1 
(8) ] 0 1 0 4 1 0 1 0 1 1 7 0 1 ® 1 0 1 © 0 

Sum 35 

Average 4.25 

1 Max 5 

I Min 3 

in place of their parents. Crossover is applied with a 
frequency POT,^= 1.0. 

After crossover, mutation is applied to the 
population members with a frequency Pmut = 0.1. It 
is interesting to note that after these genetic 
operators are applied in each generation the 
population average fitness continues to improve 
until the population become little differentiated and 
the fitness levels-off. 

The final growth test set for the PLA under 
consideration were found after the second 
generation. The test vectors are: {[0011], [0111], 
[1100],[1110],[1111]}. 

V- CONCLUSIONS AND PARALLEL 
IMPLEMENTATION 

This article describes the use of genetic 
algorithms to generate patterns for testing 
programmable logic arrays. Existing methods tend 
to be computationally expensive. Our proposed 
algorithm overcomes this problem to generate good 
solutions efficiently. While the preliminary results 
are encouraging, further testing with larger size 
PLA is necessary to validate these results. 

The algorithm described is well suited for 
parallel processing. PLA fault simulation in parallel 
using GA should help to overcome the well-known 
bottleneck of serial simulation. Genetic algorithms 
are inherently parallel algorithms. Hence 
PLATESTGA should be easily scaleable to multiple 
processor systems with shared memory. 
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