
PLAtestGA: A CNF-Satisfiability Problem for the Generation of
Test Vectors for Missing Faults in VLSI Circuits

Alfredo Cruz, PhD
Associate Professor
Department of Electrical Engineering
Polytechnic University of Puerto Rico
across @ coqui.net

Sumitra Mukherjee, PhD.
School of Computer and Information Sciences
Nova Southeastern University
sumitra@scis. nova, edu

ABSTRACT

An evolutionary algorithm (EA) approach is
used in the development of a test vector generation
application for single and multiple fault detection
of growth faults in Programmable Logic Arrays
(PLA). Three basic steps are performed during the
generation of the test vectors: crossover, mutation
and selection. The genetic operators are applied to
the CNF-satisfiability problem for the generation of
test vectors for growth faults. Once crossover and
mutation have occurred, the new candidate test
vectors with higher fitness function scores replace
the old ones. With this scheme, population members
steadily improve their fitness level with each new
generation. The resulting process yields improved
solutions to the problem of the PLA test vector
generation.

SINOPSIS

Por medio de un algoritmo que evoluciona
(Evolutionary Algorithm; EA), se desarrolla una
aplicacion que genera vectores de prueba para la
deteccion de fallas de crecimiento multiples y
sencillo en Arreglos Logicos Programables
(Programmable Logic Arrays; PLA). Los
algoritmos de evolucion son unos procedimientos
de busqueda v optimizacion que encuentran su
origen e inspiracion en el mundo biologico. En
este escrito se aplican los operadores geneticos al
problema de satisfiabilidad-CNF en la generacion
de vectores de prueba para las fallas de
crecimiento. CNF tiene varias ventajas. No hay
dependencias entre "bits". Cualquier cambio
puede resultar en un vector legal (o que hace
sentido) que puede ser un "minterm" o un
"maxterm". Por lo tanto, podemos aplicar
mutaciones y "crossover" sin la necesidad de
decodificadores o algoritmos reparadores. La
operacion de "crossover" no utiliza "lookups" o

"backtracking" como lo utilizan los operadores
que han sido utilizados previamente en la
generacion de pruebas de PLA.

I- INTRODUCTION

PLA testing has attracted the attention of many
researchers in recent years [1, 2]. Genetic and
evolutionary algorithms based solutions have been
proposed [3, 4, 5, 6] for sequential circuits.
However, PLA testing based on genetic and
evolutionary algorithms is in its earliest development
[7].

Algorithms proposed in [8] formulate the PLA
test generation by using the sharp (T) operation.
The T operation is widely used for logic
manipulation algorithms (ESPRESSO II). Several
other algorithms have been also proposed for PLA
testing using the T operation, but they tend to be
computationally expensive. A major disadvantage of
this operator is that backtracking is necessary when
a test cannot be found. The computational
overheads required by backtracking can be
prohibitive. Bose [9] proposed an algorithm, using
the T operation for extra devices that utilizes the
Quine-McCluskey method for testing missing
devices. The memory requirements for this
algorithm rise exponentially as PLA size increases.
An algorithm reported in [10] assigns a proper logic
value in the specified inputs of a potential vector.
The aim is to achieve path sensitization by
deselecting product lines connected to output
functions. The latter however, may fail to find a test
even if one exists.

Smith [11] suggests the simplification of the
algorithm by generating a test for every fault. This
results in considerably larger test vectors. Hence, a
minimal test set is not guaranteed. One of the
disadvantages in this approach is the backtracking

jfutto 2000 Audita de la, TOUwuUdad 'Politecaua. de Puente 2 1

.Tj A 2 A3 Aj III:

Figure 1: A PLA Schematic

that could occur when the test is chosen and fails to
propagate.

Other approaches have been developed for
generating a PLA test set. For example, the Design-
for-testability (DFT) uses extra components to
facilitate the PLA test, making test generation
unnecessary in some instances. All these methods
employ additional hardware, which means greater
costs and potential degradation of PLA
performance. Clearly, present DFT methods have
not addressed the problem adequately [12],

A- BASIC NOTATION AND DEFINITIONS

The PLA consists of input lines
(uncomplemented and complemented) and product
term lines. The intersections between product lines
and input bit lines or between output function lines
and product term lines are called crosspoints. Each
product line is used to realize an implicant (product
term) of the given function by placing appropriate
crosspoint devices into what is known as the AND
plane. Figure 1 shows a simple schematic of a PLA
implementing the two switching functions:

f AND_r2)OR(x2 ANDx3)

fi{x\'x2^x^x4)~{x\ AND A2) OR (a, ANDA2 AND

This PLA has four inputs (x,, x2, x3, x4), four
product terms (m,, m2, m3, m4), and two output
functions (f,, f2). K

The following definitions apply to the
discussions that follow.

Definition 1: Hamming distance: The number of
bit positions in which two product terms hold non-
don t care values that are different is called the
Hamming distance, dH.

For example, in Figure 1 the hamming distance
between m3 and m4 is two, i.e. these terms differ in
bit positions Xj and x2.

< /tui./ ivif/iJt:

22 <te fa Tfauxmfaad

In testing digital circuits, the most common!'
considered fault model is the stuck-at fault (i.e., ,wi
0 or s-a-1). However, because of the PLAN arra<
structure the stuck-at lault alone cannot adequateh
model all physical defects in a PLA (13). Therefore
a new fault class model, known as the crosspoith
model is used. The unintentional presence 01
absence of a device in the PLA causes a crosspoint
fault. '

Different types of faults are show n in Figure 1
The symbols (g-f). (,-/). Ui.A and u,.f) dcno(c (he

growth, shrinkage, appearance and disappearance
faults respectively.

The focus of this paper is on the use of uenetic
faults f°r the generation of tesl VCCIors grow th

III- THE GROWTH FAULT

litera?r°inth,haUlA ™rrespond to the removal of a
(Drodl'irt t t ArN° Plane' from a" impHcan. r ,the fUnC,i°n Which ^ '"e
ON se, H lmpl,cam- A growth fault causes the
into hi OFF™™?™8' °f 3 fault free PLA to grow
in a PLA "t • ^ maxIerms)- To detect a fault
present m TTf' that the PLA ""tpul in the
the absence onhTfaulfrhT PLA °U'PUt

fault detection are- Fan/J<r ° requ,remenls for

Propagation. ' S<-"stnza,ion and Fault

be sensteedT "h™* faU" in the AND P'ane will
carafes a (, 1 'f the implicant testing
carries a 1 ̂ nThe" 3nd if tha

has been sensitized'the"06 °f fa.Ult' °"Ce a faul!

established oth • "3 propagation path must be •-^S,SSXZA\"T'-^ y ueseiecting all other product

oc^mm PLA isC°nditi°Kn Under Whlch
"OS m fLA is given by [14]. e

sooc

i n p u t l i n e s

Figure 2: Product Term Under Test

lines connected to the output except the product
term under test.

The procedure for deriving the growth test
vectors is explained with aid of Figure 2. The
product term is represented by an AND gate of 4
inputs. A dash in the input lines indicates the
absence of a device, whereas a circle 'o' in the input
lines indicates the presence of a device.

For example, to detect a missing device at Xi of
the implicant under consideration [1X01], a logic 0
must be applied to the input xb while the care
values (at input x3 x4) remain unchanged. Since the
value of the literal was changed from 1 to 0, then a
term from this set could detect a fault in the
uncomplemented bit-line. To detect a fault in the
complemented bit-line the literal must be changed
from 0 to 1.

Now we should be able to sensitize this fault (if
one exists) at the output of the AND gate under

consideration. A value 1 at the output of the AND
gate denotes a fault while the implicant under test
carries a 0 in the absence of a fault. To generate a 0
on the product line (required for sensitization of
growth faults) the input value connected to the
target growth fault bit-line is toggled to the value
opposite the value representing the used bit-line.
The simple PLA of Figure 3 will be used to illustrate
the test pattern generation for growth faults.

The function on Table 1 of the sample PLA of
Figure 3 can be expressed as

/(x1,x2,x3,x4)= £(0,1,2,4,5,6,9,13)

The complement function and the fitness for
each element are also shown on Table 1.

The above discussion leads to the following
rules that must be established for the generation of
test vectors, for growth faults. A growth term stands

Table 1: Truth Table of the Sample PLA

Decimal X| x2 x3 x4 / / ' Fitness
Code

/ / '
/(*;)

0 0 0 0 0 1 0 4
1 0 0 0 1 0 3
2 0 0 10 0 4
3 0 0 11 0 5
4 0 10 0 0 4
5 0 10 1 0 4
6 0 1 1 0 1 0 4
7 0 1 1 1 0 1 5
8 10 0 0 0 1 5
9 10 0 1 1 4
10 10 10 0 1 5
11 10 11 0 1 5
12 1 1 0 0 0 1 5
13 1 1 0 1 1 4
14 1 1 1 0 0 1 5
15 1 1 1 1 0 1 5

ftatia 2000 LRevittA de (a VUuve-ttidad Po£iteMica etc Puente LRua 23

m-

m.

1 X 0 I

0 X I 0

0 1 0 X

0 0 0 X

0 X 0]

Figure 3: Sample PLA for Growth Faults

for the set of extra terms contributed by a growth
fault. The minterms {[0001], [0101]} are the
components of the growth term for mt of Figure 2.
The input X2 is a don't care and can be replaced
either by 0 or 1. The bits of this unspecified input
are shown underlined.

The growth term lfom a given set of product
terms is derived as follows:

PROCEDURE 1:

For each product line m.

Do (n - l o g : Q) times
{

Construct a growth term as follows:

Scan the product term from left to
right until an unmarked literal is
found;

Mark the literal and toggle its
value from 0 to 1, or from : to
0 ;

Leave the other components of the
product term intact (both literal
and don't care values). These extra
terms correspond to the
term.

growth

}

(n - log2Q) is the number of literals on each
product term.

A growth term may have terms in the ON-set
function (i. e., mintems) and in the OFF-set function
(i. e., maxterms). The terms in the ON-set function
fail to select uniquely the product line on which the
target is located, since it will also select the product
terms that cover them. Therefore, the fault can not
be propagated. Furthermore, since a fault can be
sensitized by a term from the ON-set function, it is
necessary to delete those terms from the growth
term. This procedure can be carried out by
computing the intersection (denoted by (f)))
between the growth term generated for each
product with the complement function (OFF-set) [8
10]. One of the disadvantages in this approach is the
backtracking that could occur when the test is
chosen and fails to propagate.

Another approach is to apply the sharp
operation (T) between the growth term generated

for each product term and the ON-set function.
Bose in [1,9] uses this operation to find terms that
are not covered by the ON-set function. However,
terms partially covered by any input product can
not be eliminated from the growth term without
eliminating the growth term - an invalid test vector
may be generated after the Quine-McC'luskey
method is applied.

PLATESTGA uses the conjunctive normal
form (CNF) logical expression, equivalent to the
complement's function, to derive the test set for
growth faults. The use of the CNF is supported by
the De Morgan's theorem [15]. The terms
complement and OFF-set function are equivalent.

The generalized form of this theorem states
that the complement of an expression is obtained by
interchanging AND and OR operations and
complementing each variable and constant The
complement of the function of Table 1 is deriv ed bv
taking duals and complementing each literal.

The simple PLA of Figure 3 with the expression
in its CNF will be used to illustrate the test pattern
generation. This expression is equivalent to the
complement function (see Table 1).

24 de U fawwuidad Votite&tica de Pxento

f ' { x \ , x 2 , X , , X4) = (_v; OR A, OR A')

AND (A- OR V^OR.VJ
AND (A, OR A (OR A J
AND (A, OR A, OR A,)
AND (A, OR v, OR v;)

The use of CNF has several advantages over
the two approaches mentioned before. It eliminates

L'ZT'I °f;rSeCtln8 3 redunda„t growth
term with a valid candidate test vector and
consequently eliminates a good test vector Also a
minimal test set is guaranteed. d

sn,i -?'tu PPly 3 ge"etic al£or'thm usino the CNF
vectors for ^ J" generation of test

determine whethrtherrexistl'rtrmh1'^'11 '°
for the variable* in the • *rulh assignment
expression evaluates toP^e!°We°
assignment of TRUE or FA1 SF < i n an

the 4 literals of the sample^f^ so^haMh^CNF

Quxio 2000

xi -*2 *3 .T4 f

'"5

fimwlh Tpr-i

. LLXJU 1 X I I I X 00

. 1 X 1 0 O X H I) 0 X 1 1

. 110 x nnox 0 1 1 x

100x n 1 0 x 00 1 x

. 1 XI) 1 0x11 i) x n 0

Figure 4: The Growth Term of the PLA

expression evaluates to TRUE. The CNF expression
of the sample PLA is made up of five clauses. That
will allow us to rank potential bit pattern solution in
the range of 0 to 5, depending on the number of
clauses that pattern satisfies. Table 1 shows the
fitness of each element. When a pattern has a fitness
of 5, a maxterm of the function is evaluated. A
growth fault can be detected by this pattern if the
intersection exists with a term(s) from the growth
term set. The growth term set is the union (U) of
the growth term generated by each product term
(refer to Procedure 1). It is important to understand
that an undetectable fault can not be detected by any
pattern.

It is hard to imagine a problem with better
suited representation: a binary vector of fixed length
similar as the PLA physical layout should do the
job. There are other several advantages, there are
not dependencies between bits: any change would
result in a legal (meaning) vector (either a minterm
or a maxterm). Thus we can apply mutations and
crossovers without any need for decoders or repair
algorithms. Even other less frequently used genetic
operators, such as the inversion (reversing the order
of bits in the pattern) or exchange (interchanging
two different bits in the pattern) leave the resulting
bit pattern a legitimate possible solution [16, 17].

The growth term for the sample PLA is derived
using Procedure 1 (see Figure 4). The fully
redundant growth terms are underlined. A growth
term is fully redundant when it is fully covered by
one or more input product terms. A growth term
may be partially redundant, i. e., partially covered
by one or more input product terms.

PLATESTGA removes any possibility of
intersecting a redundant term of the growth term
with the solution found using the GA. That is, the
offspring generated by the truth assignment using
the genetic operator is always a valid candidate.

The following Lemma is necessary to the
present discussion.

Lemma I: A maxterm generated with the genetic
operators with a dn equal to 1 from any product
term is qualified to detect a missing device fault in
that product.

The proof of this Lemma is supported by
Procedure 1 and the CNF used for the pattern
generation.

IV- THE PLA GENETIC ALGORITHM

The basic genetic algorithm, where P(?) is the
population of strings at generation t is given below:

procedure genetic algorithm

set time t := 0
select an initial population P(c)
while the termination condition is not
me t, do:
1
evaluate fitness of each member of
P(t) ;

select the fittest members from P(t);
generate offspring of the fittest pairs
(using genetic operators);

replace the weakest members of P(t) by
these offspring;

set time t := t-i-1

Selection alone cannot introduce any new
individuals into the population, i.e., it cannot find
new candidate test vectors in the search space.
Selection is done on the basis of relative fitness and
it probabilistically eliminates from the population
those candidate test vectors which have relatively
low fitness. Recombination, which consists of
mutation and crossover, imitates sexual
reproduction.

Crossover is performed with crossover
probability Pcims between two selected strings, called
parents, by exchanging parts of their genomes (i.e.,
encoding) to form two new individuals, called
offspring. It is implemented by choosing a random

t%uua 2000 RevMz <U U tOtwetaUUd PoiaittuM, de puenfo "Rica 25

. c r o s s o v e r

p o i n t
X

10 1 j 0 I 0 1 1 p a r e n t s
1 m I i 0 0 !

Head 1 1 Tail 1 Head 2 1 arf 2

I 0 J 0 0
Head Tail 2

D o i o II
H c «id 2

U
Figure 5. The Effect of the Crossover Operation

point between I and the string length (8) minns one
I I A _ 1 1 : ~ _ i

operators used in PLA test generation, doesToIuse propagarion^of ^ f™* necessar>' to assure
lookupsbacktracking. Crossover is both simple SetSTf there X ^ "eXI sl«p is ,o

efficient. This operation enables the to 1 frnm rh are product ternis with a d„ equal
evolutionary process rn mnv* the pattern (candidate n,a

o w ^ \ - / • » - « . « « V l l t ,

IL 0 - 1] in the selected pair of parents and
exchanging the substring defined by that point (i e
swap the tad portion of the string) to produce new

pring. That is, all the information from one
parent is copied from the start up to the crossover
point, and then all the information from the other
paren is co^ed from the crossover point to the end

the offspnng (chromosome). The new
chromosome thus gets the head r»f >

occurring alter the third bit.
The crossover operation, unlike previous

operators used in PLA test generation, does not use
lookups or baektraeking. Crossover is both simple

efficient. This operation enables the
evolutionary process to move towards optimal
solutions m the search space. The usefulness of
crossover is due to the combination of better than
average substrings coming from different individual

fl;„ ^U!a;'on.ProbabiIis'irally chooses a bit and
flips it. Mutation is needed because if selection and
crossover together search new solutions, they tend
to cause rapid convergence and there is a danger of
osing potentially useful genetic materials, such as Os

of 1 P.aTcular locati™ of the specified values
of the candidate test vector under evolution.

The following GA parameters are used for
testing growth faults of the sample PLA of Figure 3;

Uniform Crossover Single Cut Point

' .est!:'is°LTrati0nS 1 UM" 3 ™'maI

• Size of Population : 8
• Crossover Probability : 1.0
• Mutation Probability ; 0.1

PLATESTGA begins, at generation 0 with a
population of 8 patterns. For each generation, each

26 * U ^

individual m the population is calculated as the
number of clauses that pattern satisfies. A maximum
value of 5 means that the pattern (candidate test
vector) matches each clause of the CNF expression
and consequently it is a valid candidate. For

ample the fitness lor the pattern J0001J of Table
I is 3, while the fitness for the pattern 11100J is S

of missm V00' m particu,ar pcrniil 'he detection
activated i J" Ienm ,ha[^ ™ activated, i. e., product terms that are compatible
with the pattern under consideration

Tabl^ lOMIU generated on
generate the V3 SmCC genelic operators generate the pattern flllO! rhen it a .• i
candidate valid test This k U

propagation of the' fault T.neeessary 10 assure

define if there are product^^,,

These product term) are rn' °ne li,eraI"
this pattern detects a L"1'' a"d m5' Tberef°re.
terms^her/ryMfr dlfT
Hamming distance away) nT ^ ̂
detected by the pattern ron nT 'nissl"8 faults
the aid of Lemma l u 1 (W'th fitness 5> ^
fanits detectecTare circled bv^b "l ̂ 4" THe

respective positions in the PLA. ken"'lne ln their

fitness ofP5. The fittesV me "h"" f,II0J) have a

more than once A hits mbers can be selected
reproducuon opet,; ;r.hett"Whee' " "Sed aS the

fittest members have n r n .L W3y tlle scicc!lnn of
being reproduced and n n° '0na"y more chances of
than once. Tabt 2 Se,eCted

individual is reproduced OnceX 7^ ™

sooo

TABLE2: GENERATION0

String Population Fitness #of Mate Pool Mate Crossover Mutation
copies (cross point

x, X2 X3 x4 /(x 0 reprodu site shown) # P -1 cross 1.0 PmuF 0.1
ced

(D 0 0 0 I 3 0 0 I 1 0 1 3 0 0 1 ® 0 ©
 ©

(2) 0 I 0 1 4 1] 1 1 1 0 6 1 I 1 0 I 1 1 0
(3) 1 1 I 0 © 1 0 0 i 1 1 0 1 0 0 0 1 0 0 0 1
(4) 0 0 1 0 4 1 0 1 1 1 0 5 0 1 1 0 0 I 1 0
(5) 0 1 1 0 4 1 I 1 1 1 0 4 1 1 1 0 1 1 1 0
(6) 1 1 1 0 © 2 1 1 1 I 0 2 1 © 1 0 1 ® 1 0
(7) 0 1 1 I © 1 0 1 1 1 I 8 0 1 1 1 0 1 1 1
(8)] 0 1 0 4 1 0 1 0 1 1 7 0 1 ® 1 0 1 © 0

Sum 35

Average 4.25

1 Max 5

I Min 3

in place of their parents. Crossover is applied with a
frequency POT,^= 1.0.

After crossover, mutation is applied to the
population members with a frequency Pmut = 0.1. It
is interesting to note that after these genetic
operators are applied in each generation the
population average fitness continues to improve
until the population become little differentiated and
the fitness levels-off.

The final growth test set for the PLA under
consideration were found after the second
generation. The test vectors are: {[0011], [0111],
[1100],[1110],[1111]}.

V- CONCLUSIONS AND PARALLEL
IMPLEMENTATION

This article describes the use of genetic
algorithms to generate patterns for testing
programmable logic arrays. Existing methods tend
to be computationally expensive. Our proposed
algorithm overcomes this problem to generate good
solutions efficiently. While the preliminary results
are encouraging, further testing with larger size
PLA is necessary to validate these results.

The algorithm described is well suited for
parallel processing. PLA fault simulation in parallel
using GA should help to overcome the well-known
bottleneck of serial simulation. Genetic algorithms
are inherently parallel algorithms. Hence
PLATESTGA should be easily scaleable to multiple
processor systems with shared memory.

VI- REFERENCES

[t] P. Bose, "A Novel Technique for Efficient
Implementation of a Classical Logic/Fault
Simulation Problem," IEEE Trans, on
Computers, Vol. 37, pp.1569-1577, December
1984.

[2] A.Cruz and R. Reilova, "A Hardware
Performance Analysis for a CAD Tool for PLA
Testing, " 39'h Midwest Symposium on Circuits
and Systems, 1997.

[3] M. S. Hsiao, E, M. Rudnik and Janak H. Patel,
'"Automatic Test Generation Using Genetically
Engineering Distinguishing Sequences,"
Proceedings of the VLSI Test Symposium, pp.
216-223, April 1996.

[4] E. M. Rudnik, J. G. Holm, D. G. Saab and
Janak Patel, "Application of Simple Genetic
Algorithms to Sequential Circuit Test
Generation," Design Automation Conference,
pp. 717-721, June 1994.

[5] Janak Patel et al., "Parallel Genetic Algorithms
for Simulation-based Sequential Circuit Test
Generation," Proceedings of the International
Conference on VLSI Design, pp. 475-481,
January 1997.

[6] E. M. Rudnik and Janak Patel, "A Genetic
Approach to Test Application Time Reduction
for Full Scan and Partial Scan Circuits,"
Proceedings of the Eight International
Conference on VLSI Design," pp. 288-293,
January 1995.

m A. Cruz and S. Mukherjee, "PLAGA: A Highly
Parallelizable Genetic Algorithm for

fttnio 2000 IRetriata. de (a TdtiveMidcid Polite&UM eU T'u&ifo %iea 27

Programmable Logic Arrays Test Pattern
Generation," Congress on Evolutionary-
Computation, Vol. 2, July 6-9, 1999.

[8] R. S. Wei and Sangiovanni-Vicentelli,
"PLAtypus: A PLA Test Generation Tool."
Trans, on Computer Aided Design, Vol. CAD-
5, October 1986.

[9] P. Bose, "Generation of Minimal and Near-
Minimal Test Set for Programmable Logic
Arrays," International Conference on
Computers, December 1984.

[10] M. Robinson and Rajski, "An Algorithm
Branch and Bound Method For PLA Test
Pattern Generation," International Test
Conference, pp. 66-74, 1988.

[it] J. E. Smith, "Detection of Faults in
Programmable Logic Arrays," IEEE
Transactions on Computers, Vol. C-28, No.
11, November 1979.

[12] Hua and et al., "Built-in Tests for VLSI Finite
State Machines," Dig. of Papers I4'h Int'l Conf.
on Fault Tolerant Computing, June 1984.

[13] M. Abramoci and et al., "Digital Systems
Testing and Testable Design," 41 Madison
Avenue, New York, NY 10010: Computer-
Science Press. 1990.

[14] V. K. Agarwal, "Multiple Fault Detection in
Programmable Logic Arrays." IEEE Trans, on
Computers, Vol. C-28. pp. 518-522, June
1980.

[15] M. Mano and R. Kime, "Logic and Computer
Design," 2nd Ed., Prentice Hall, 2000.

[161 Z. Michalewicz, "Genetic Algorithms + Data
Structures = Evolution Programs." Third,
Revised Edition. Springer Verlag. 1996.

[17] G. Lugger and W. A. Stubblefield. Artificial
Intelligence: Structures and Strategies for
Complex Problem Solving." 3rd Ed.. Addison-
Wesley, 1998.

[18] G. Goldberg. "Genetic Algorithms in Search.
Optimization and Machine Learning." Addison
Wesley, Reading. MA. 1989.

28 RevOta- eit to- ttttuKMidad "POUUUUM <U T'uê fy
tTutiaSOOO

