
Mobile Application Architecture, Implementation for a Local Gas Prices with

Community Participation, and Gas Station Location

Alex Santos Ramos

Master of Engineering in Computer Engineering

Advisor: Dr. Nelliud Torres, DBA

Electrical and Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract  The objective of this article is to

establish the fundamental components of a mobile

architecture model that enables the development of

a production-graded solution for local (Puerto

Rico) gas prices and gas station locations. It will

establish this model by identifying each component

based on the responsibilities of the system.

Components will be identified by looking at the

basic needs and desired features of the proposed

system, from a high-level point of view. The

approach is to match the system expected behavior

with technologies that enable those functionalities.

Once the components are identified, it will describe

the interaction between them and take the basic

considerations regarding mobile infrastructure

solutions like communication technologies and

security system. It will also provide a prototype

mechanism to establish a custom/proprietary

advertisement system through the mobile

application in which advertisement space will be

allocated at the mobile graphic interface. Finally, it

will consider how the technology developed here

can be expanded into other areas/solutions.

Key Terms  Gas Prices, Mobile

Architecture, Mobile Authentication, RESTful API,

Web Server.

INTRODUCTION

This article is part of an initiative from the

engineering services company Empresas O’Neill,

LLC to enter the mobile development and

application business [1] . This company is currently

looking into a local advertisement business model

using mobile application. One of the areas of

services been considerate by the company is the

facilitation of local gas prices with user

participation, and near gas station location with

minimal list sorting criteria as a value added for the

potential mobile app users. As an example, users

can decide to save money on gasoline by knowing

beforehand what are the price options that they

have close them. As today (Sept 2018), Puerto

Rico’s gas prices can variate from 3 to 8 cents per

liter [2] .

More importantly, the article focuses in

encapsulating all the concepts, technology and

further information that enables a mobile

application architecture, that serve as a building

block or/and starting point to develop more

complex mobile solutions into the future.

PROBLEM STATEMENT

As per every application development, this

article starts by gathering all the needed capabilities

and expected behaviors of the mobile application.

This is done by establishing a list of use cases and

desired features.

Is expected for that application to:

 Create a basic model for a mobile application

infrastructure.

 Be a mobile application that can be used from a

cellphone.

 To obtain near gas stations with single touch.

 Get/Submit gas prices for a gas stations.

 Sorting gas station per criteria.

 Use Google Map integration for GPS.

 Provide a space for advertisement.

 User identification.

Most of the features described above translate

to low-level requirements, but they also allow us to

start identifying what are the mayor needs for the

system. We can archive this by grouping the above

features/capabilities within mayor components that

can provide each service. This methodology helps

in identifying components and requirements in a

general high-level definition for the overall system.

All the previously describe capabilities can be

assigned to the following components:

 Mobile Application - Be a mobile application

that can be used from a cellphone, provide a

space for advertisement, sorting gas station per

criteria, obtain near gas stations with single

touch.

 Web Server - Get/Submit gas prices for a gas

stations.

 Third Party Services - Use Google Map

integration for GPS, User identification.

With this exercise, the basic model of a mobile

infrastructure starts to take shape.

DESIGN

Translating desired/needed features to system

components creates a starting point for the design.

The design is developed by expanding and

completing the existing identified components by

taking into consideration all technical aspects that

are required to build the mobile architecture.

There are three more functionalities that from a

technical aspect are required to complete the mobile

infrastructure, and those are:

 Inter Component Communication -

individual components needs to have a

common way to communicate with each other.

 Data Storage – need to store all prices

submitted by the users and provide them back

to the users.

 Security – the infrastructure needs to provide

the basic principle of security: confidentially,

integrity and availability (CIA) [3] .

From now on all the components are identified

from the ground up starting from what will host

each component of the mobile infrastructure, up to

which technologies are used to implement them.

To run a web server, we need to select an

Infrastructure-as-a-Service (IaaS) provider [4] [5] .

The IaaS provides the computing and cloud

resources to host the mobile infrastructure server

side. This project will be build using the Amazon

Web Services (AWS) Free Tier in particular the

Amazon Elastic Compute Cloud (EC2) and the

Elastic Load Balancer services [6] [7] . Over this

IaaS a Web Stack can be installed to support all the

Web Server functionalities, Data Storage,

Security and part of the Inter Component

Communication. Nowadays there are a lots of

options as Web Stack, but for this project a Linux-

Apache-MySQL-PHP (LAMP) Web Stack will be

implemented as it covers all the necessities of the

mobile architecture in a relative simple way [8] [9]

. The AWS EC2 instance will provide the

cloud/web computer to host a Linux OS. Linux will

be hosting the server Apache to receive the HTTP

requests to the server [10] . Other two components

that the OS will be hosting are the database system

MySQL and the scripting language preprocessor

PHP. MySQL will contain the mechanism to

storage data in the OS file system and the language

to request and submit data on it [11] . PHP is a

hypertext processor that allows us to define and

handle the server request/response and the local

interactions with the database [12] . See below

illustration for an overall setup for the web server

configuration.

Figure 1

Web Server

The remainder of the responsibility for a

mobile architecture falls under the Mobile Client.

The Mobile Client will provide the users the

mobility meaning that the service available from

anywhere where there is a mobile carrier data

signal. For this project it will be used the well-

established Android Operative System (OS)

environment. The user will be able to choose a cell

phone manufacture of his choice. The manufacture

will provide its Linux Kernel which is from where

the Android framework operates from and the

communication between their hardware and the

Android OS called Hardware Abstraction Layer

(HAL). The OS will provide a complete

environment from where to run an Android

application [13] . This means that the

implementation of the mobile client will only need

to focus on the Android mobile application.

Finally, the inter component communication

will be implemented using a RESTful API. The

RESTful API make use of the HTTP technology to

establish communication between web and mobile

components [14] .

IMPLEMENTATION – WEB SERVER

The web server is divided and implemented

into the following groups:

 database management

 security and access

 third party services

 support

The database management control the access

to the database management system and the stored

data for internal (mobile app authentication) and

external (app data) requests. It is executed by three

PHP classes which are:

 db_config.php

 db_class.php

 db_manage.php

The db_config holds the information needed to

connect to the database management system. The

db_class defines the object with which the web

server connects to the database system in order to

provide and request information to the database in a

generic aspect. These two file codes contribute into

creating the technology for the mobile architecture.

Last db_manage is the application specific

implementation for the database which defines the

queries that will be performed by both the web

server and the mobile client application.

Creating a service that is accessible through the

internet brings the challenge of how access to that

service will be managed. The security and access

from the web server point of view are related to

getting access to the web server services, and which

http protocols are used to communicate securely to

the server. The following code files manage these

aspects:

 fuletealo_api_authorizer.php

 http_post_only.php

The fuletealo_api_authorizer will ensure that

the mobile application developed for this mobile

architecture is the only with access to the web

server services. It does that be validating a unique

information provided by the mobile application

against what is store on the database for the same

mobile application.

Of all the http methods available the http POST

is the only that don’t expose the user/client

submitted data on the request url. Therefore, the

http_post_only code file will ensure that all

requests made to the web server are POST methods

or they will be rejected. These two code files will

also provide towards creating the mobile

architecture technology.

Between the application specific functionalities

there is the capability gas stations near to the user.

To accomplish this, the system make use of a third

party service from Google that enables this

functionality at a server level [15] called Places

API. To manage the Places API endpoints and

credentials the following code file was created:

 google_api_config

Another third party service needed for the

system is the definition of valid gas prices. This is

taken for the local Puerto Rico consumer

department DACO [2] . The following code file

manage to grab the price ranges from DACO:

 Get_daco_gas_price_ranges.php

Finally, there is a support function to calculate

distance between the coordinates of the user

location and the gas stations near him.

IMPLEMENTATION - RESTAPI

The REST API is used in other to enable a

standardize way from which two different

components can communicate with each other. This

communication is done with the use of the http verb

POST. The two components that will make used of

it in the mobile architecture are the Wed Server and

the Mobile Application. The mobile application

will always be the requester and the web server will

be the responder.

At the web server side, the RESTAPI make

available the following endpoints (urls):

 (domain)/get_gas_stations.php

 (domain)/set_gas_prices.php

 (domain)/get_price_ranges.php

 (domain)/get_ads.php

The main two functionalities of the mobile

application are getting near gas stations and

providing prices for them. The get_gas_stations.php

allows the mobile application to ask the server to

request all near gas stations from the Google

services Places API. The set_gas_prices allows the

mobile application to ask the web server to store

gas prices for a gas station near the user that was

presented as a part of gas station list. To support the

ability to provide gas prices by users, the mobile

application can get a valid range for gas prices from

the web server by using the endpoint

get_price_ranges with which the application can

determine if the prices provided by a user are valid

or not. To support the business models of providing

ads the REST API have the endpoint get_ads which

return all the ads entered by the database

administrator in the database. This endpoint also

provides a possible component for future different

mobile architecture.

To complete the RESTAPI all the http calls

were defined within and Android library [16] .

Within this library various java classes where

defined to enable communication through the

RESTAPI.

The classes can be group under the following

categories:

 HTTP Connector: RESTUtil.java

 RESTAPI client: Server.java

 Data modeling: UserData.java, GasPrices.java

 Support: AppFingerprint.java, Hash.java

The RESTUtil class provides the bare bone of

the htttp protocol for the mobile application which

is used by the server class to connect/use the

endpoints provided by the web server. The server

class also make use of the AppFingerprint and

Hash classes to provide the web server a unique

information with which the server can uniquely

identify the mobile application. Finally, the data

modeling classes UserData and GasPrices are used

for easiness to data allocation and transmission.

This Android library represent a building block for

future mobile architecture as well.

IMPLEMENTATION - MOBILE

APPLICATION

The mobile application can be divided into two

major areas: its code and the graphical user

interface (GUI).

The application code can be divided as well into its

functional blocks as follow:

 View Controllers: SplashScreen, MainActivity,

DetailsPopUp, SortPopUp.

 Managers: AdsManager, RegionValidator,

GoogleSignInManager.

 Data Modeling: AdItem, Region.

 Support: ListAdapter, MyComparator, Locator.

 (It also makes use of the Android library

mentioned before).

The responsibility of the view controllers is to

put together the user GUI and handle all the user’s

request through the GUI interactions. The

AdsManager class is in charge of requesting the ads

from the web server and presenting them switching

from one to another in a timed cycle. This class can

be used as well as a mobile architecture building

block where and ads system is in place. Since the

mobile application is developed for a local (Puerto

Rico) audience, the class RegionValidator evaluates

the current user coordinates to enable the

application, if the user is outside an authorized

region, the class make the application close right

away. The GoogleSignInManager wrap the

configuration for using a sign in system with the

Android account used for the Play Store application

[17] . The data modeling classes put together all

data information into an object for easiness of use

and manage. To control the components of the list

view for the gas stations the ListAdapter was

created. The list can sort the gas station list by

using the class MyComparator which allows the list

to be sorted by gas station brand, distance and

prices. To obtain the user coordinates the

application uses the class locator which wrap all the

steps needed to request coordinates from the

location provider Android system class [18] .

This second part of the mobile application

implementation is allocated to illustrate the GUI.

The application starts with the presentation view

which shows the application (Fule73alo) and the

company names.

Figure 2

Initial Splash View

After the user passes the location validation

where his current location is evaluated against an

authorized region, the user is taken to the user

principal view the main activity.

Figure 3

Main Activity

The main activity offers the following GUI

interactions:

1. Ads – when this area is selected the user is

taken to a link related to what is been

advertised in the illustration.

2. Long Row Click – when the user holds a long

click in an item of the list, the application

popup a window showing more detailed

information of that gas station and further

options.

3. GPS Icon – when selecting the GPS icon, the

application does a transition to Google Maps to

illustrate the location of the gas station.

4. Drag List Down – by dragging the gas station

list down, the application request again the list

of gas station near, and them updates the list

accordingly.

5. Three Vertical Dots Icon – when selected it

present the user an option to logging (identify)

itself into the application. This is required to

submit gas prices.

6. Sort Icon – when selected it presents a popup

window to select a criterion for sorting the

presented list.

To be able to submit gas prices the user needs

to login using its Google account. Once logged in,

it can perform a long click over the gas station row

for which it wants to provide/update gas prices. On

the text input fields, the DACO’s defined prices

ranges are shown.

Figure 4

Gas Station Details and Submit Prices

Once the list of gas stations near the user is

obtained, the user can choose to sort the list by

criteria as follows: distance, station name or prices.

 Once a gas station is chosen as the place to fill

up the user car gas tank, if the user is not familiar

with the gas station it can then request for the

application to provide direction in a GPS fashion

step by step. This is enabled by the Google Maps

Intents which allows a transition from our

application to the Google Maps application [19] .

The intent uses the coordinates of the gas station

selected by the user.

Figure 5

Sort by View

Figure 6

Google Map View

SECURITY (CERTIFICATE FOR

ENCRYPTION)

The final consideration will be regarding

security. Since the communication is performed

using a RESTAPI services, there is the need to

encrypt the communication data. For this purpose,

the public-key cryptography is used in particular

the RSA implementation [20] . AWS services

enable this functionality by using a certificate

signed by them. But this signed certificate can only

be assigned from the load balancer that the free tier

services provides. The load balancer has a

difference purpose which is outside the scope of

this article, which means that is only mentioned

here because of the AWS sign certificate feature.

This will create an https communication protocol

which is encrypted between the server and the

mobile application [21] .

FUTURE WORK

A very important aspect of a mobile

architecture that use databases is the maintenance

of it which includes period backups so that the

system data source can be restore completely if

necessary.

Another important aspect is the ability of the

system to expand/increase its computing resources.

Amazon includes a system designed for this called

Elastic Beanstalk which is a technology that allows

the scaling of the infrastructure. Other IaaS offer

similar solution [22] .

Finally, the Fule73alo application have a

potential to expand its functionality into a travel or

road assistance including services like finding food

restaurants, hotels, car rentals and others.

CONCLUSION

From the information gathered throughout the

design and implementation of the mobile

architecture a generic version of a mobile

architecture can be defined. Figure 7 illustrates this

generic version named Web Server Infrastructure. It

presents the web server setup and all technology

aspects of the web server.

The RESTAPI implementation described here

is an application specific development which it

cannot be used directly as defined as a base code,

but it will surely be a helpful reference for a future

mobile architecture.

Figure 7

Web Server Infrastructure

This is also the case for the mobile application

which is also an application specific case, but it can

be a reference for future mobile architecture. This is

a mobile architecture knowledge that can be

expanded by creating new solutions using this

article as starting block.

REFERENCES

[1] Empresas O’Neill. (2018, October 17). Empresas O’Neill,

LLC [Online]. Available: https://www.empresasoneill.com.

[2] Departamento de Asuntos del Consumidor (DACO).

(2018, October 17). Precios de Gasolina [Online].

Available: http://daco.pr.gov/servicios/precios_combusti

bles/precios_gasolina/Pages/default.aspx.

[3] C. P. Pfleeger & S. L. Pfleeger, Analyzing Computer

Security, Prentice Hall, 2012, ch. 1.

[4] ProfitBricks. (2018, October 17). What is Infrastructure as

a Service (IaaS)? [Online]. Available: https://www.profit

bricks.com/en-us/cloud-lexicon/iaas/.

[5] Stackyfy. (2017, October 7). Top IaaS Providers: 42

Leading IaaS Providers to Streamline Your Operations

[Online]. Available: https://stackify.com/top-iaas-provi

ders/.

[6] AWS. (2018, October 17). AWS Free Tier [Online].

Available: https://aws.amazon.com/free/?awsf.Free%20

Tier%20Types=categories%2312monthsfree.

[7] AWS. (2018, October 17). Amazon EC2 [Online].

Available: https://aws.amazon.com/ec2/.

[8] StackShare io. (2018, October 17). Tech Stacks [Online].

Available: https://stackshare.io/stacks.

[9] M. Korsak. (2016, May 31). What is a LAMP Stack?

[Online]. Available: https://medium.com/linode-cube/what

-is-a-lamp-stack-4c36da4d2aa8.

[10] Mozilla. (2018, October 17). An overview of HTTP

[Online]. Available: https://developer.mozilla.org/en-US/

docs/Web/HTTP/ Overview.

[11] MySQL. (2018, October 17). What is MySQL? [Online].

Available: https://dev.mysql.com/doc/refman/5.7/en/what-

is-mysql.html.

[12] PHP. (2018, October 17). What is PHP? [Online].

Available: http://php.net/manual/en/intro-whatis.php.

[13] Android, Developers. (2018, October 17). Platform

Architecture [Online]. Available: http://php.net/manual/en

/intro-whatis.php.

[14] REST API Tutorial. (2018, October 17). Learn REST: A

RESTful Tutorial [Online]. Available: https://www.restapi

tutorial.com/.

[15] Google. (2018, October 17). Places API [Online].

Available: https://developers.google.com/places/web-servi

ce/intro.

[16] Android. (2018, October 17). Create an Android library

[Online]. Available: https://developer.android.com/studio/

projects/android-library.

[17] Android. (2018, October 17). Google Sign-In for Android

[Online]. Available: https://developers.google.com/identi

ty/sign-in/android/s tart-integrating.

[18] Android. (2018, October 17). Location Strategies [Online].

Available: https://developer.android.com/guide/topics/loca

tion/strategies.

[19] Android. (2018, October 17). Google Maps Intents for

Android [Online]. Available: https://developers.google.

com/maps/documentation/urls/android-intents.

[20] W. Stalling, Cryptography and Network Security, Pearson,

2012, ch. 9.

[21] AWS. (2018, October 17). Elastic Load Balancing

SSL/TTS Certificates for Classic Load Balancers [Online].

Available: https://docs.aws.amazon.com/elasticloadbalan

cing/latest/classic/ssl-server-cert.html.

[22] AWS. (2018, October 17). AWS Elastic Beanstalk

[Online]. Available: https://aws.amazon.com/elastic

beanstalk/?nc1=h_ls.

