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Abstract ⎯ Many times, as we travel in a region 

from one place to another we start wondering if 

there’s a better, optimal path to travel from point A 

to point B.  In order to figure this out, normally, we 

would seek for details of some of the possible ways 

of finding such optimal path.  However, during our 

analysis we then start to see things that are 

subjective such as “steep uphills followed by steep 

downhills” and we wonder if a path with those 

characteristics would indeed be the optimal path 

from point A to B.  Through this project we attempt 

to create a cost function that can help us answer 

such question.  This cost function would take 

terrain data such as latitude, longitude, elevation, 

to compute a cost based on constraints subject to 

the user’s interest.  With this information we intend 

to produce a node graph to model a region of 

interest in a map that shows the optimal path from 

point A to B. 

Key Terms ⎯ Bellman-Ford, Cost Function, 

Shortest Path, Travel Cost. 

INTRODUCTION 

Many times, as we travel in a region from one 

place to another we start wondering if there’s a 

better, optimal path to travel from point A to point 

B.  In order to answer this question we could ask 

locals for their opinion based on the fact that they 

may be more familiar with a map or region, or one 

could look for details of some of the possible ways 

of finding such optimal path. 

However, during our analysis we often start to 

see things that are subjective such as “steep uphills 

followed by steep downhills” and we wonder if a 

path with those characteristics would indeed be the 

optimal path from point A to B.  Sometimes, it may 

be really complicated to determine what the optimal 

travel path is because each user may have a 

different mindset on constraints, or limitations. 

Some constraints or limitations that could influence 

one’s analysis when determining such optimal path 

could be: 

• Toll Stations 

• Road conditions 

• Terrain contour (mountainous or relatively flat) 

• Traffic congestion 

• Distance 

Through this project we attempt to create a cost 

function that can help us answer such question.  

This cost function would take terrain data such as 

latitude, longitude, elevation, to compute a cost 

based on constraints subject to the user’s interest.  

The main driver of this cost function will be the 

distance and slope of inclination from one point to 

another.  Based on these main parameters for the 

cost function the cost will be then computed by 

taking into account a subjective opinion from the 

user as to how much cost could an uphill affect the 

base cost of a path, or how a downhill could affect 

the base cost of a path; these are interpreted as 

penalties and bonuses, respectively. 

With this information we intend to produce a 

directed node graph to model a region of interest in 

a map in which we can model the cost function 

based on the user’s subjective opinion of uphill 

penalties, and downhill bonuses.  The end result 

would be a node graph that can show the map with 

the costs (i.e. edge weights) that represent how 

much cost does it take to go from one node to 

another.  After we have properly modeled the map 

after the cost function and map data, we will be 

using a shortest path algorithm: Bellman-Ford [1]; 

that can compute the shortest path from point A to 

B.  Finally, we shall compare two similar maps, 

with one subtle but significant difference, to 

observe how the cost function would compute a 

different shortest path depending on the available 

routes (i.e. paths) from a source to a destination. 



BACKGROUND AND RELATED WORK 

The main reason why this topic was selected to 

be a project idea, mainly was because there is not 

much work done in this area.  Usually when we 

search for research topics such as Encryption, 

Steganography, we find that there a very active 

academic community contributing to that area.  For 

areas involving “Shortest path”, as we attempt to 

find any existing work we start to see that there are 

little to no contributions. 

One famous software we may use on a daily 

basis is Google Maps [2].  This software mainly 

answers one question: “How do I get from point A 

to point B as fast as possible?”.  This software also 

allows the user to add certain constraints such as 

avoiding toll stations.  When the software has an 

answer it outputs such path, with some additional 

information to the user.  However, while this 

software is really good at doing that we cannot see 

what’s exactly doing to compute such path. 

This project then attempts to produce a cost 

function that could be used to determine the cost of 

traveling from one location to another.  This cost 

function is to be used with a single source shortest 

path algorithm such as Bellman-Ford single source 

shortest path so that we can obtain an answer to a 

more specific question: “How much does it actually 

cost to go from point A to point B?” 

In addition to this, the US Department of 

Energy (DOE) has also conducted some research 

regarding the fuel efficiency of heavy vehicles [3] 

based on terrain conditions such as: road grade, 

travel speed, vehicle weight, among others.  A 

complimentary research to the previous research 

was conducted by the National Laboratory of 

Renewable Energy (NREL), as part of the DOE, 

which consisted of studying the consumption of 

energy of modern automobiles [4].  For that 

research, different types of vehicles (i.e. gasoline, 

electric, High Efficiency Vehicles) were put 

through simulation of a different series of trips with 

varying road grades and terrain conditions to 

determine how these conditions could affect the 

energy consumption of similar or comparable 

vehicles. 

For both of these researches that were 

conducted by the DOE we can see that road grade 

and terrain conditions can affect the energy 

consumption of any vehicle.  With this project we 

look forward to build an equation to estimate the 

cost of traveling through different paths in a given 

terrain to determine which path is the most cost-

effective based on distance and changes in 

elevations. 

PROBLEM 

The main problem of this project was to model 

travel cost depending on terrain data such as 

elevation and distance.  As we travel constantly to 

our day-to-day places, we may be asking ourselves 

“Is there any better way of doing this?”  The 

problem with this question, albeit a simple one, is 

that the answer can be hard to answer since there is 

no clear-cut way of determining when a steep uphill 

becomes “very” costly to travel through, or when a 

downhill becomes “very” relieving to travel 

through.  With so many variables being taken into 

account it just becomes too hard to come up with a 

simple answer.   

Out of all the possible variables that could be 

involved when attempting to answer the main 

question we have: 

• Slope 

• Distance 

• Initial costs required to just travel though a 

certain path (e.g. toll stations) 

• Medium (e.g. on foot, bicycle, gasoline car, 

electric vehicle, etc) 

• Road conditions 

• Congestion 

• Traffic lights 

Through this project, we look forward to create 

a cost function that can compute a cost of travelling 

through a certain path such that we can weigh all 

the paths in a certain region of a map, and use an 

existing algorithm for shortest path to find a path 

that can answer our main question. 



METHODOLOGY 

To solve this we then modeled locations as a 

3D coordinate composed of latitude, longitude, and 

elevation.  Since this information is, mostly, 

publicly available through many sources such as the 

United States Geological Survey (USGS) or Google 

we could choose a local region to create, test, and 

tune our cost function. 

Any region that we would choose for our 

project could be modeled properly by using a 

directed graph whose vertices would contain: 

latitude, longitude, elevation, and neighbors; and 

edges would contain: source, destination, and cost.  

The reason why a directed node graph was chosen 

over a non-directed node graph was because the 

former would allow us to properly model cases in 

which the paths (i.e. streets) are one-way only.  The 

cost function would take a source and a destination 

as inputs and output the computed cost of traveling 

through that path. 

𝑐𝑜𝑠𝑡𝑈𝑝(𝑎, 𝑏) = 𝑖 + 𝑑 (1 +
𝑝 ∗ 𝑠

𝑚
)                 (1) 

𝑐𝑜𝑠𝑡𝐷𝑜𝑤𝑛(𝑎, 𝑏) = 𝑖 + 𝑑 (1 −
𝑏 ∗ 𝑠

𝑚
)           (2) 

Because we look forward to make this project 

scalable for many applications we left some 

variables in the cost equations for uphill and 

downhill scenarios.  In both equations (1) and (2) 

we have some terms that are being used to compute 

a travel cost from point A to point B, among these 

terms we have some variables: 

• d to represent a distance cost.  For this project 

we computed the Euclidean distance between 

a, and b. 

• p to represent an uphill penalty (e.g. 0.70 for 

70%) – used only for uphill cases. 

• b to represent a downhill bonus (e.g. 0.25 for 

25%) – used only for downhill cases. 

• s to represent the slope between two points. 

• m to indicate a maximum allowed slope. 

With these variables we expect to leave some 

room for different scenarios such as high-slope or 

low-slope scenarios where a certain threshold of 

inclination is possible.  For this project these 

variables were set to meet some basic assumptions; 

a maximum penalization for uphill paths was set to 

70%, and maximum bonus of 25% based on the 

slope of the path and the distance between the two 

points.  If, however, a path with a slope greater than 

45 degrees of uphill is found the cost will be set to 

infinity; the same would apply for any downhill 

with 45 degrees of inclination. 

To compute the slope between two coordinates 

in a 3D space we can use vector math to build a 

right triangle.  Since we have coordinates from 

point A to point B we only need to compute a 

coordinate point C for the triangle base, as shown 

in Figure 1.  At this point we can obtain the vector 

𝐴𝐵⃗⃗⃗⃗  ⃗ and vector 𝐴𝐶⃗⃗⃗⃗  ⃗, normalize them, and obtain the 

angle between these two vectors by computing 

cos−1(𝐴𝐵⃗⃗⃗⃗  ⃗ • 𝐴𝐶⃗⃗⃗⃗  ⃗).  For downhill scenarios, the angle 

would be computed by performing the same 

operation but with vectors 𝐵𝐴⃗⃗⃗⃗  ⃗ and 𝐵𝐶⃗⃗⃗⃗  ⃗. 

 
Figure 1 

 Right Triangle Made with the Start and End Coordinates 

(Latitude, Longitude, Elevation) 

With the slope of the path from A to B at hand, 

we then compute a penalty or bonus to the distance 

cost based on a percentage of the slope divided by 

the max slope.  In uphill scenarios, the cost function 

will favor short-distance, low incline paths over 

long-distance, high incline paths; that is, the shorter 

and the lower slope of the path will result in a lower 

the penalty. For downhill scenarios, the cost 

function will favor long-distance, high incline paths 

over short-distance, low-incline paths.  It’s 

important to note that, based on the cost functions 

(1) and (2), we can see that the cost is mainly 

based, or applied, to the base distance from point A 

to B. 



This cost function will output a number 

indicating the total cost of traveling through that 

edge in the node graph.  In Figure 2, we can see a 

line plot to better visualize how the cost function 

will determine the cost of traveling through an 

uphill path.  Additional to the computed cost, there 

is an additional cost that can be added to the 

equations to take into account other subjective 

external costs that the cost function is not able to 

model.  This initial value can be used to influence 

the total cost from one vertex to another.  Some 

applications in which this initial cost can be 

beneficial is when trying to add a cost attributed to 

the road conditions, congestion, traffic lights, or for 

toll stations. The cost produced by equations (1) 

and (2), even without the initial cost taken into 

account (i.e. i = 0) is expected to grow linearly 

according to the variables that can affect the cost. 

 
Figure 2 

Uphill Cost Function Plot, with Slopes (s) Ranging from 𝟏° 

to 𝟒𝟓°, Maximum Slope (m) of 𝟒𝟓°, a Maximum Penalty (p) 

of 70%, Initial Cost (i) of 0, and a Base Distance (d) of 20 

Units 

With the cost function now at hand we can then 

compute the cost of all the edges in the node graph. 

After all the edge weights have been computed we 

can use Bellman-Ford single source shortest path 

algorithm to determine what is the optimal path 

from point A to B. 

In order to visualize the data, along with the 

computed shortest path based on our cost functions 

from equations (1) and (2) we used a Python [5] 

package that could help us plot data and visualize 

graphs: Matplotlib [6], and NetworkX [7], 

respectively. 

RESULTS AND DISCUSSION 

First off, we tested this cost function with 

different scenarios with two algorithms for single 

source shortest path, namely, Bellman-Ford and 

Dijkstra’s [8] algorithms.  The maps that were used 

to test the cost functions were similar to the map 

presented in Figure 3; five nodes with one of these 

placed at a higher elevation to the other four nodes, 

and six edges to connect the vertices. 

 
Figure 3 

Node Graph with Edge Weights Modeled after the Cost 

Function 

To output the shortest path modeled by the cost 

function, we then represented the node graph as a 

2D plot by having the X axis represent latitudes, 

and the Y axis represent the longitudes in a 2D 

coordinate system.  The elevation was represented 

through a Color Map.  When a shortest path is 

computed the edges of the graph are painted in 

green color to highlight such path, the rest of the 

paths are plotted in black color; with all edges 

having their respective weights.  This visualization 

can be observed in Figure 3. 

All tests produced results that were consistent 

to the design of the cost function, and as early as in 

Figure 3 we can see the some of the results of 

modeling the edge weights with the cost function.  

We can see that the cost to travel from node A to 

node E is nearly the same as travelling from node A 

to node C, considering that the only difference 

between these two scenarios is the change in 

elevation; the former is an uphill scenario while the 

latter is a plain terrain scenario (i.e. no change in 

elevation). 



As we tested the cost function with different 

maps we obtained interesting results.  However, 

another scenario was tested; this scenario 

introduced two nodes and three edges to the map; 

this new map can be observed in Figure 4.  The 

main purpose of testing whether or not the cost 

function would indicate that a better, cheaper, 

alternate shortest path would be favored instead of 

going through uphill and downhill scenarios as 

shown in Figure 3.  In this map, we can see that all 

of the nodes in the left side of the graph have the 

same elevation, allowing us to introduce a shortest 

path by travelling through a relatively flat surface. 

 
Figure 4 

Shortest Path by going through a Flat Path around the 

Uphill 

By comparing the results obtained when 

modeling the travel costs and the computed shortest 

path we can see how the cost function affects the 

computed shortest path.  In the first map, we 

provided three possible paths to go from node A 

(bottom) to node D (top): A flat path {A, C, D}, a 

path with subtle changes in elevation {A, B, D}, 

and a path with harsh changes in elevation {A, E, 

D}.  For the second map, although with different 

node labeling, we introduced an additional path 

from A to D: {A, C, F, D} which geometrically 

shorter than {A, C, D} in the first map.  Both maps 

had their cost computed with the same parameters 

of the equations, leaving map (i.e. geometric) 

differences to produce changes in results. 

To accomplish this, we created a Python script 

(Version 3.7.2; Python Software Foundation) that 

would read the data from a Comma Separated 

Values (CSV) file to model a weighted, directed 

node graph, compute all the costs for all the graph 

edges, compute the shortest path and output a 

visualization of such shortest path.  A flowchart of 

this process can be observed in Figure 5. 

 
Figure 5 

Flowchart of Python Script to Compute a Shortest Path for a 

Given Start and Destination Nodes in a Graph 

For the CSV input file, we can observe in 

figure 6 we can observe how the input would be 

formatted.  The input file format is formatted such 

that we can read all the necessary input to model 

such node graph from one file only.  The input(s) 

are classified as “vertex”, “edge”, “route”; each 

contains a specified set of values.  The input for 

“vertex” contains a logical ID (key), latitude (as X 

component), longitude (as Y component), elevation 

(as Z component), and a label.  The input for 

“edge” contains values for a source, destination, 

and initial cost (by default all initial costs were set 

to 1).  The last type of input we can process in this 

input file is the “route” which contains values for a 

start and end, to indicate from which node we want 

to compute a shortest path for a given destination. 

 
Figure 6 

Sample CSV Input File Used to Model a Weighed, Directed 

Node Graph 



After all the node and edges from the directed 

node graph would be put together, all the weights 

(costs) were computed using the cost function 

described in equations (1) and (2) accordingly (i.e. 

uphill cases were applied equation (1) and downhill 

cases were applied equation (2)); in Figure 7 we see 

a snippet of the Python script that computes the cost 

for uphill cases. 

 
Figure 7 

Snippet of the Python Script that Computes the Cost for an 

Uphill Path 

When all of the edge costs (weights) in node 

graph are computed we use the Bellman-Ford 

algorithm for single-source shortest path.  An 

implementation of this algorithm can be observed 

in figure 8.  To build the node graph model we 

created classes to represent Vertices and Edges in a 

graph, this allows us to manipulate data more easily 

while maintaining the data organized (i.e. 

encapsulated).  The Graph class would contain the 

cost function, and some other additional elements 

such as uphill penalty and downhill bonus 

variables. 

 
Figure 8 

Snippet of the Implementation of the Bellman-Ford 

Algorithm for Single-Source Shortest Path in our Python 

Script 

The end result is what we have discussed at the 

beginning of this section, in Figures 3 and 4.  With 

this Python script we are now able to model basic 

terrain (or map) data using a weighted, directed 

node graph and compute a shortest path using our 

cost function. 

CONCLUSION 

The results that we obtained as part of this 

work seem to be really promising when thinking 

about creating a cost function that can accurately 

model our way of determining optimal travel paths.  

With the progress that was made as part of this 

project alone, we can now model optimal travel 

paths for simple maps such as a town map. 

I believe that keeping the uphill and downhill 

constants as part of the cost function are key 

computing cost because users may have different 

limitations, apart from the different cases in which 

this cost function could be used to model. 

FUTURE WORK 

As part of future work, we could see this 

project be expanded to take into account more 

complex elements such as road conditions, 

maximum speed allowed, physics to observe how 

the cost could vary depending on the weight of the 

object that will be travelling through the node 

graph.  Finally, additional work could be dedicated 

to take into account the physical shapes of the paths 

(i.e. curves). 

Because the cost function is may still be 

“immature”, applying this to real world data could 

still be a challenging milestone.  With the current 

progress of this project we could apply this to real 

world data where paths are consists only of straight 

lines and that is precisely one limitation that the 

project now possesses. 

Another area in which this project can have 

additional work incorporated is when attempting to 

discover what are the appropriate values for uphill 

penalties and downhill bonuses for cases in which 

the user: rides a bicycle, motorcycle, or an electric 

vehicle.  In the case of electric vehicles, downhills 



could very well yield significant downhill bonuses 

since most of these vehicles are designed to 

recharge their batteries when going downhills. 
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