
Implementation of a Cost Function to Model Travel Cost for Shortest Path Routing

Carlos Rivera López

Master in Computer Science

Advisor: Jeffrey Duffany, Ph.D.

Electrical and Computer Engineering & Computer Science Department

Polytechnic University of Puerto Rico

Abstract ⎯ Many times, as we travel in a region

from one place to another we start wondering if

there’s a better, optimal path to travel from point A

to point B. In order to figure this out, normally, we

would seek for details of some of the possible ways

of finding such optimal path. However, during our

analysis we then start to see things that are

subjective such as “steep uphills followed by steep

downhills” and we wonder if a path with those

characteristics would indeed be the optimal path

from point A to B. Through this project we attempt

to create a cost function that can help us answer

such question. This cost function would take

terrain data such as latitude, longitude, elevation,

to compute a cost based on constraints subject to

the user’s interest. With this information we intend

to produce a node graph to model a region of

interest in a map that shows the optimal path from

point A to B.

Key Terms ⎯ Bellman-Ford, Cost Function,

Shortest Path, Travel Cost.

INTRODUCTION

Many times, as we travel in a region from one

place to another we start wondering if there’s a

better, optimal path to travel from point A to point

B. In order to answer this question we could ask

locals for their opinion based on the fact that they

may be more familiar with a map or region, or one

could look for details of some of the possible ways

of finding such optimal path.

However, during our analysis we often start to

see things that are subjective such as “steep uphills

followed by steep downhills” and we wonder if a

path with those characteristics would indeed be the

optimal path from point A to B. Sometimes, it may

be really complicated to determine what the optimal

travel path is because each user may have a

different mindset on constraints, or limitations.

Some constraints or limitations that could influence

one’s analysis when determining such optimal path

could be:

• Toll Stations

• Road conditions

• Terrain contour (mountainous or relatively flat)

• Traffic congestion

• Distance

Through this project we attempt to create a cost

function that can help us answer such question.

This cost function would take terrain data such as

latitude, longitude, elevation, to compute a cost

based on constraints subject to the user’s interest.

The main driver of this cost function will be the

distance and slope of inclination from one point to

another. Based on these main parameters for the

cost function the cost will be then computed by

taking into account a subjective opinion from the

user as to how much cost could an uphill affect the

base cost of a path, or how a downhill could affect

the base cost of a path; these are interpreted as

penalties and bonuses, respectively.

With this information we intend to produce a

directed node graph to model a region of interest in

a map in which we can model the cost function

based on the user’s subjective opinion of uphill

penalties, and downhill bonuses. The end result

would be a node graph that can show the map with

the costs (i.e. edge weights) that represent how

much cost does it take to go from one node to

another. After we have properly modeled the map

after the cost function and map data, we will be

using a shortest path algorithm: Bellman-Ford [1];

that can compute the shortest path from point A to

B. Finally, we shall compare two similar maps,

with one subtle but significant difference, to

observe how the cost function would compute a

different shortest path depending on the available

routes (i.e. paths) from a source to a destination.

BACKGROUND AND RELATED WORK

The main reason why this topic was selected to

be a project idea, mainly was because there is not

much work done in this area. Usually when we

search for research topics such as Encryption,

Steganography, we find that there a very active

academic community contributing to that area. For

areas involving “Shortest path”, as we attempt to

find any existing work we start to see that there are

little to no contributions.

One famous software we may use on a daily

basis is Google Maps [2]. This software mainly

answers one question: “How do I get from point A

to point B as fast as possible?”. This software also

allows the user to add certain constraints such as

avoiding toll stations. When the software has an

answer it outputs such path, with some additional

information to the user. However, while this

software is really good at doing that we cannot see

what’s exactly doing to compute such path.

This project then attempts to produce a cost

function that could be used to determine the cost of

traveling from one location to another. This cost

function is to be used with a single source shortest

path algorithm such as Bellman-Ford single source

shortest path so that we can obtain an answer to a

more specific question: “How much does it actually

cost to go from point A to point B?”

In addition to this, the US Department of

Energy (DOE) has also conducted some research

regarding the fuel efficiency of heavy vehicles [3]

based on terrain conditions such as: road grade,

travel speed, vehicle weight, among others. A

complimentary research to the previous research

was conducted by the National Laboratory of

Renewable Energy (NREL), as part of the DOE,

which consisted of studying the consumption of

energy of modern automobiles [4]. For that

research, different types of vehicles (i.e. gasoline,

electric, High Efficiency Vehicles) were put

through simulation of a different series of trips with

varying road grades and terrain conditions to

determine how these conditions could affect the

energy consumption of similar or comparable

vehicles.

For both of these researches that were

conducted by the DOE we can see that road grade

and terrain conditions can affect the energy

consumption of any vehicle. With this project we

look forward to build an equation to estimate the

cost of traveling through different paths in a given

terrain to determine which path is the most cost-

effective based on distance and changes in

elevations.

PROBLEM

The main problem of this project was to model

travel cost depending on terrain data such as

elevation and distance. As we travel constantly to

our day-to-day places, we may be asking ourselves

“Is there any better way of doing this?” The

problem with this question, albeit a simple one, is

that the answer can be hard to answer since there is

no clear-cut way of determining when a steep uphill

becomes “very” costly to travel through, or when a

downhill becomes “very” relieving to travel

through. With so many variables being taken into

account it just becomes too hard to come up with a

simple answer.

Out of all the possible variables that could be

involved when attempting to answer the main

question we have:

• Slope

• Distance

• Initial costs required to just travel though a

certain path (e.g. toll stations)

• Medium (e.g. on foot, bicycle, gasoline car,

electric vehicle, etc)

• Road conditions

• Congestion

• Traffic lights

Through this project, we look forward to create

a cost function that can compute a cost of travelling

through a certain path such that we can weigh all

the paths in a certain region of a map, and use an

existing algorithm for shortest path to find a path

that can answer our main question.

METHODOLOGY

To solve this we then modeled locations as a

3D coordinate composed of latitude, longitude, and

elevation. Since this information is, mostly,

publicly available through many sources such as the

United States Geological Survey (USGS) or Google

we could choose a local region to create, test, and

tune our cost function.

Any region that we would choose for our

project could be modeled properly by using a

directed graph whose vertices would contain:

latitude, longitude, elevation, and neighbors; and

edges would contain: source, destination, and cost.

The reason why a directed node graph was chosen

over a non-directed node graph was because the

former would allow us to properly model cases in

which the paths (i.e. streets) are one-way only. The

cost function would take a source and a destination

as inputs and output the computed cost of traveling

through that path.

𝑐𝑜𝑠𝑡𝑈𝑝(𝑎, 𝑏) = 𝑖 + 𝑑 (1 +
𝑝 ∗ 𝑠

𝑚
) (1)

𝑐𝑜𝑠𝑡𝐷𝑜𝑤𝑛(𝑎, 𝑏) = 𝑖 + 𝑑 (1 −
𝑏 ∗ 𝑠

𝑚
) (2)

Because we look forward to make this project

scalable for many applications we left some

variables in the cost equations for uphill and

downhill scenarios. In both equations (1) and (2)

we have some terms that are being used to compute

a travel cost from point A to point B, among these

terms we have some variables:

• d to represent a distance cost. For this project

we computed the Euclidean distance between

a, and b.

• p to represent an uphill penalty (e.g. 0.70 for

70%) – used only for uphill cases.

• b to represent a downhill bonus (e.g. 0.25 for

25%) – used only for downhill cases.

• s to represent the slope between two points.

• m to indicate a maximum allowed slope.

With these variables we expect to leave some

room for different scenarios such as high-slope or

low-slope scenarios where a certain threshold of

inclination is possible. For this project these

variables were set to meet some basic assumptions;

a maximum penalization for uphill paths was set to

70%, and maximum bonus of 25% based on the

slope of the path and the distance between the two

points. If, however, a path with a slope greater than

45 degrees of uphill is found the cost will be set to

infinity; the same would apply for any downhill

with 45 degrees of inclination.

To compute the slope between two coordinates

in a 3D space we can use vector math to build a

right triangle. Since we have coordinates from

point A to point B we only need to compute a

coordinate point C for the triangle base, as shown

in Figure 1. At this point we can obtain the vector

𝐴𝐵⃗⃗⃗⃗ ⃗ and vector 𝐴𝐶⃗⃗⃗⃗ ⃗, normalize them, and obtain the

angle between these two vectors by computing

cos−1(𝐴𝐵⃗⃗⃗⃗ ⃗ • 𝐴𝐶⃗⃗⃗⃗ ⃗). For downhill scenarios, the angle

would be computed by performing the same

operation but with vectors 𝐵𝐴⃗⃗⃗⃗ ⃗ and 𝐵𝐶⃗⃗⃗⃗ ⃗.

Figure 1

 Right Triangle Made with the Start and End Coordinates

(Latitude, Longitude, Elevation)

With the slope of the path from A to B at hand,

we then compute a penalty or bonus to the distance

cost based on a percentage of the slope divided by

the max slope. In uphill scenarios, the cost function

will favor short-distance, low incline paths over

long-distance, high incline paths; that is, the shorter

and the lower slope of the path will result in a lower

the penalty. For downhill scenarios, the cost

function will favor long-distance, high incline paths

over short-distance, low-incline paths. It’s

important to note that, based on the cost functions

(1) and (2), we can see that the cost is mainly

based, or applied, to the base distance from point A

to B.

This cost function will output a number

indicating the total cost of traveling through that

edge in the node graph. In Figure 2, we can see a

line plot to better visualize how the cost function

will determine the cost of traveling through an

uphill path. Additional to the computed cost, there

is an additional cost that can be added to the

equations to take into account other subjective

external costs that the cost function is not able to

model. This initial value can be used to influence

the total cost from one vertex to another. Some

applications in which this initial cost can be

beneficial is when trying to add a cost attributed to

the road conditions, congestion, traffic lights, or for

toll stations. The cost produced by equations (1)

and (2), even without the initial cost taken into

account (i.e. i = 0) is expected to grow linearly

according to the variables that can affect the cost.

Figure 2

Uphill Cost Function Plot, with Slopes (s) Ranging from 𝟏°

to 𝟒𝟓°, Maximum Slope (m) of 𝟒𝟓°, a Maximum Penalty (p)

of 70%, Initial Cost (i) of 0, and a Base Distance (d) of 20

Units

With the cost function now at hand we can then

compute the cost of all the edges in the node graph.

After all the edge weights have been computed we

can use Bellman-Ford single source shortest path

algorithm to determine what is the optimal path

from point A to B.

In order to visualize the data, along with the

computed shortest path based on our cost functions

from equations (1) and (2) we used a Python [5]

package that could help us plot data and visualize

graphs: Matplotlib [6], and NetworkX [7],

respectively.

RESULTS AND DISCUSSION

First off, we tested this cost function with

different scenarios with two algorithms for single

source shortest path, namely, Bellman-Ford and

Dijkstra’s [8] algorithms. The maps that were used

to test the cost functions were similar to the map

presented in Figure 3; five nodes with one of these

placed at a higher elevation to the other four nodes,

and six edges to connect the vertices.

Figure 3

Node Graph with Edge Weights Modeled after the Cost

Function

To output the shortest path modeled by the cost

function, we then represented the node graph as a

2D plot by having the X axis represent latitudes,

and the Y axis represent the longitudes in a 2D

coordinate system. The elevation was represented

through a Color Map. When a shortest path is

computed the edges of the graph are painted in

green color to highlight such path, the rest of the

paths are plotted in black color; with all edges

having their respective weights. This visualization

can be observed in Figure 3.

All tests produced results that were consistent

to the design of the cost function, and as early as in

Figure 3 we can see the some of the results of

modeling the edge weights with the cost function.

We can see that the cost to travel from node A to

node E is nearly the same as travelling from node A

to node C, considering that the only difference

between these two scenarios is the change in

elevation; the former is an uphill scenario while the

latter is a plain terrain scenario (i.e. no change in

elevation).

As we tested the cost function with different

maps we obtained interesting results. However,

another scenario was tested; this scenario

introduced two nodes and three edges to the map;

this new map can be observed in Figure 4. The

main purpose of testing whether or not the cost

function would indicate that a better, cheaper,

alternate shortest path would be favored instead of

going through uphill and downhill scenarios as

shown in Figure 3. In this map, we can see that all

of the nodes in the left side of the graph have the

same elevation, allowing us to introduce a shortest

path by travelling through a relatively flat surface.

Figure 4

Shortest Path by going through a Flat Path around the

Uphill

By comparing the results obtained when

modeling the travel costs and the computed shortest

path we can see how the cost function affects the

computed shortest path. In the first map, we

provided three possible paths to go from node A

(bottom) to node D (top): A flat path {A, C, D}, a

path with subtle changes in elevation {A, B, D},

and a path with harsh changes in elevation {A, E,

D}. For the second map, although with different

node labeling, we introduced an additional path

from A to D: {A, C, F, D} which geometrically

shorter than {A, C, D} in the first map. Both maps

had their cost computed with the same parameters

of the equations, leaving map (i.e. geometric)

differences to produce changes in results.

To accomplish this, we created a Python script

(Version 3.7.2; Python Software Foundation) that

would read the data from a Comma Separated

Values (CSV) file to model a weighted, directed

node graph, compute all the costs for all the graph

edges, compute the shortest path and output a

visualization of such shortest path. A flowchart of

this process can be observed in Figure 5.

Figure 5

Flowchart of Python Script to Compute a Shortest Path for a

Given Start and Destination Nodes in a Graph

For the CSV input file, we can observe in

figure 6 we can observe how the input would be

formatted. The input file format is formatted such

that we can read all the necessary input to model

such node graph from one file only. The input(s)

are classified as “vertex”, “edge”, “route”; each

contains a specified set of values. The input for

“vertex” contains a logical ID (key), latitude (as X

component), longitude (as Y component), elevation

(as Z component), and a label. The input for

“edge” contains values for a source, destination,

and initial cost (by default all initial costs were set

to 1). The last type of input we can process in this

input file is the “route” which contains values for a

start and end, to indicate from which node we want

to compute a shortest path for a given destination.

Figure 6

Sample CSV Input File Used to Model a Weighed, Directed

Node Graph

After all the node and edges from the directed

node graph would be put together, all the weights

(costs) were computed using the cost function

described in equations (1) and (2) accordingly (i.e.

uphill cases were applied equation (1) and downhill

cases were applied equation (2)); in Figure 7 we see

a snippet of the Python script that computes the cost

for uphill cases.

Figure 7

Snippet of the Python Script that Computes the Cost for an

Uphill Path

When all of the edge costs (weights) in node

graph are computed we use the Bellman-Ford

algorithm for single-source shortest path. An

implementation of this algorithm can be observed

in figure 8. To build the node graph model we

created classes to represent Vertices and Edges in a

graph, this allows us to manipulate data more easily

while maintaining the data organized (i.e.

encapsulated). The Graph class would contain the

cost function, and some other additional elements

such as uphill penalty and downhill bonus

variables.

Figure 8

Snippet of the Implementation of the Bellman-Ford

Algorithm for Single-Source Shortest Path in our Python

Script

The end result is what we have discussed at the

beginning of this section, in Figures 3 and 4. With

this Python script we are now able to model basic

terrain (or map) data using a weighted, directed

node graph and compute a shortest path using our

cost function.

CONCLUSION

The results that we obtained as part of this

work seem to be really promising when thinking

about creating a cost function that can accurately

model our way of determining optimal travel paths.

With the progress that was made as part of this

project alone, we can now model optimal travel

paths for simple maps such as a town map.

I believe that keeping the uphill and downhill

constants as part of the cost function are key

computing cost because users may have different

limitations, apart from the different cases in which

this cost function could be used to model.

FUTURE WORK

As part of future work, we could see this

project be expanded to take into account more

complex elements such as road conditions,

maximum speed allowed, physics to observe how

the cost could vary depending on the weight of the

object that will be travelling through the node

graph. Finally, additional work could be dedicated

to take into account the physical shapes of the paths

(i.e. curves).

Because the cost function is may still be

“immature”, applying this to real world data could

still be a challenging milestone. With the current

progress of this project we could apply this to real

world data where paths are consists only of straight

lines and that is precisely one limitation that the

project now possesses.

Another area in which this project can have

additional work incorporated is when attempting to

discover what are the appropriate values for uphill

penalties and downhill bonuses for cases in which

the user: rides a bicycle, motorcycle, or an electric

vehicle. In the case of electric vehicles, downhills

could very well yield significant downhill bonuses

since most of these vehicles are designed to

recharge their batteries when going downhills.

REFERENCES

[1] J. Bang-Jensen & G. Gutin, “Section 2.3.4: The Bellman-

Ford-Moore algorithm”, in Digraphs: Theory, Algorithms

and Applications (1st ed.), 2000. ISBN: 978-1-84800-997-

4.

[2] Google Maps. (n.d.). Available: https://maps.google.com.

[3] O. Franzese & D. Davidson. (2011). Effect of Weight and

Roadway Grade on the Fuel Economy of Class-8 Freight

Trucks, ORNL/TM-2011/471 [Online]. Available:

https://info.ornl.gov/sites/publications/files/Pub33386.pdf.

[4] E. Wood, E. Burton, A. Duran & J. Gonder. (2014).

“Contribution of Road Grade to the Energy Use of Modern

Automobiles Across Large Datasets of Real-World Drive

Cycles”, in SAE World Congress 2014 Detroit, Michigan

[Online]. Available: https://www.nrel.gov/docs/fy14osti/

61108.pdf .

[5] Python Software Foundation. (2019). [Computer

Software]. Available: https://www.python.org.

[6] J. D. Hunter, “Matplotlib: A 2D Graphics Environment”,

2007. 21-9615/07/$25.00 © 2007 IEE.

[7] A. A. Hagberg, D. A. Schult, P. J. Swart, G. Varoquaux, T.

Vaughtn & J. Millmam, “Exploring network structure,

dynamics, and function using NetworkX”, in Proceedings

of the 7th Python in Science Conference (SciPy2008)

(Pasadena, CA USA), Aug. 2008, pp. 11–15.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest & C. Stein,

“Section 24.3: Dijkstra's algorithm”, Introduction to

Algorithms (2nd ed.), MIT Press and McGraw–Hill, 2001,

pp. 595–601. ISBN: 0-262-03293-7.

