
Customer Support Tool

Francisco J. Castillo Rivera

Master in Computer Science

Advisor: Othoniel Rodríguez, Ph.D.

Electrical and Computer Engineering & Computer Science Department

Polytechnic University of Puerto Rico

Abstract Small sales companies rely on their

customers’ satisfaction after sale has been made. A

big part of a customer satisfaction relies on the

customer support given to them after the product has

been sold. The problem with small companies is that

must of the time they produce enough money to have

all people needed to maintain a good customer

service. It gets even worst when a company sales

technology to other business owner. Having a

customer support tool is a must for the company

making the sales in order to keep track of day to day

equipment problems. A tool that handles available

personnel in order to assign tasks, send notifications

of new customer calls, keep track of unresolved

problems, and even reminding the technicians when

a preventive maintenance is needed, will help a

small company keep their reputation with the

customer they already have and make an entrance

for new customers.

Key Terms Customer Support, Data

Handling, Service, Small business.

INTRODUCTION

The Customer Support Tool is a web-based

system with the capability of storing pending or

resolved day-to-day customer calls, notifying the

available technician via email or text message when

a new call appears, notifying personnel when a

preventive maintenance is needed for a specific

equipment and guide them through the process, help

sales persons to submit new quotations inquiries,

notify sales persons when the quotation is ready for

the customer, storing lead customers for future

follow-up, and generating reports for customers

leads and day-to-day customer calls.

The system main components are the SQL

database, and the content management software. The

content management software allows the

development of graphical user interface using

languages like JavaScript, PHP, HTML, and CSS

and provides easier way to handle users.

The content management software is

responsible for storing the user input in the SQL

database component. It is also responsible for

handling user authentication and authorization in

order to keep the Customer Support Tool data safe.

Both components are in the same web server.

Having a customer support tool is a must for the

company making the sales in order to keep track of

day to day equipment problems. A tool that handles

available personnel in order to assign tasks, send

notifications of new customer calls, keep track of

unresolved problems, and even reminding the

technicians when a preventive maintenance is

needed, will help a small company keep their

reputation with the customer they already have and

make an entrance for new customers. There is a

popular saying “The best marketing strategy is the

word of mouth”.

REQUIREMENTS SPECIFICATION

Based on the business needs, stakeholders’

discussion and current customers’ feedback we have

outline functional and nonfunctional requirements to

make sure we meet all business needs in order to

provide a better service.

Functional Requirements

 The system stores and allows access to customer

calls in a database.

 The system keeps customer calls as pending or

closed.

 The system notifies the available technician via

email or text message of a new entry using

REST API

 The system generates a report of stored

customer calls.

 The system allows sales user to request new

equipment quotes.

 The system provides a way to notify the sales

user when a quote is ready for the customer

using REST API.

 The system stores and allows access to customer

leads in an organized matter.

 The system stores and allows access to customer

visits in order to keep customer follow-up

history.

 The system generates a report of customer visits

stored in the database.

Nonfunctional Requirements

 The system must be available 24/7.

 The system REST API must be accessed using

HTTPS.

 The system must process a high volume of

messages.

 The system must recover from failures.

Use Cases

This section describes how the Customer

Support Tool should work and describes the most

important system’s features. It also describes

interaction between system components: SQL

Database and content management software (CMS).

Each use case focuses on a specific scenario and

describes the steps that are necessary to bring it to

successful completion [1]. We have used a tabular

approach to easily provide sufficient details about

these interactions and also provide consistency

between use cases. Here is an explanation of the

template used:

 Use Case Id (required) - each use case have a

use case id defined by UC-{number}

 Use Case Name (required) - each use case have

a name to easily identify it. Basically is the

operation’s name.

 Description (optional) – column is used to

describe the use case with more detailed

explanation.

 Preconditions (optional) – required state or

operations to be performed before use case.

 Actors (required) – entities involved in use case.

 Normal Sequence (required) – list of ordered

steps to complete operation.

 Post conditions (optional) – required operations

to be performed after use case. Could be some

reset of state, etc.

 Exceptions (optional) – used for exceptions or

errors when executing normal sequence.

 Comments (optional) – used for general or

useful information.

Here are the most important use cases in the

Customer Support Tool:

Table 1

UC-01 Store New User Information

Description End user creates new account

through graphical interface.

Preconditions A SQL database has been created

to store information.

Actors CMS, SQL DB, End User

Normal

Sequence

1. End user access CMS

through graphical

interface to store

information.

2. CMS connects to SQL

DB.

3. CMS performs HTTP

POST method.

4. SQL DB stores

information in

corresponding table.

5. SQL DB sends

acknowledgement to

CMS.

6. Notifications is shown

to End User.

Postconditions N/A

Exceptions 1. User cannot be created

due to DB connection

error. It must be

notified to the user.

Comments N/A

Table 2

UC-02 Store New Customer Call

Description User stores new entry to system.

Preconditions User is logged in to system and

has the role to store new entries.

SQL DB has already been created.

Actors CMS, SQL DB, End User

Normal

Sequence

1. End user fills call information

through graphical interface.

2. CMS connects to SQL DB.

3. CMS performs HTTP POST

method.

4. SQL DB stores call information.

5. SQL DB sends

acknowledgement to CMS.

6. Notification is shown to End

User.

Postconditions N/A

Exceptions 1. Information cannot be stored

due to DB connection error. It

must be notified to end user.

Comments N/A

Table 3

UC-03 Send Text Message or Email Notification to

Technician

Description Notification is sent to user with the

technician role.

Preconditions User has created an account with

complete information.

Actors End User, CMS, REST API

Normal

Sequence

1. CMS prepares information to be

sent.

2. CMS sends information using

REST API (text message) or

SMTP (email).

3. Notification is received by end

user.

4. CMS receives HTTP OK

response

Postconditions N/A

Exceptions 1. If notification cannot be sent,

CMS response with a 4xx HTTP

Status.

Comments N/A

Table 4

UC-04 Send New Quote Request

Description User request new quote.

Preconditions User has an account created.

Actors End User, CMS, SQL DB

Normal

Sequence

1. User fills quote information

through graphic interface.

2. CMS connect to SQL DB.

3. SQL DB stores quote

information.

4. SQL DB sends

acknowledgement to CMS.

5. CMS sends notification user.

Postconditions N/A

Exceptions 1. Information cannot be stored

due to DB connection error. It

must be notified to end user.

Comments N/A

Table 5

UC-05 Retrieve Customer Leads Using Filters

Description User retrieves customer leads

using filters.

Preconditions User has an account created.

Actors End User, CMS, SQL DB

Normal

Sequence

1. User selects filter through

graphical interface.

2. CMS connects to SQL DB.

3. CMS performs HTTP GET

method with desired filters.

4. SQL DB responds with filtered

information.

5. CMS shows information to user

through graphical interface.

Postconditions N/A

Exceptions 1. Information cannot be stored

due to DB connection error. It

must be notified to end user.

Comments N/A

Table 6

UC-06 Generate Customer Calls Reports Using Filters

Description User generates customer calls

report using filters.

Preconditions User has an account created.

Actors End User, CMS, SQL DB

Normal

Sequence

1. User selects filter through

graphical interface.

2. CMS connects to SQL DB.

3. CMS performs HTTP GET

method with desired filters.

4. SQL DB responds with filtered

information.

5. CMS uses fPDF PHP class to

generate report in PDF format.

Postconditions N/A

Exceptions 1. Information cannot be stored

due to DB connection error. It

must be notified to end user.

Comments N/A

Table 7

UC-07 Notify Technician of Preventive Maintenance

Description Notification is sent to users with

technician role.

Preconditions User has created an account with

complete information.

Actors End User, CMS, REST API

Normal

Sequence

1. CMS prepares information to be

sent.

2. CMS sends information using

REST API.

3. Notification is received by end

user.

4. CMS receives HTTP OK

response

Postconditions N/A

Exceptions 1. If notification cannot be sent,

CMS response with a 4xx HTTP

Status.

Comments N/A

DESIGN SPECIFICATIONS

The Customer Support Tool is designed with

extensibility and scalability in mind. We are taking

great care in designing a framework which can be

updated easily. Many of the anticipated changes to

our system in future phases will only require adding

new types of data and changing the user presentation

code to make use of these new data. The design will

only require "plugging in" these new types of data

without refactoring the logic that passes the data

over the network, retrieves and updates the database,

etc. There are three basic, logical components of the

system: Database Engine, Server Application, and

Client Applications.

Database Engine – SQL data source used to

handle data regarding users and service information.

 Existing open source software: phpMyAdmin

 Hosts the backend database which is used for

central data storage.

Server Application –Application that resides in

a web server.

 Implemented in HTML, PHP and Javascript

 Provides methods and procedures that can be

invoked remotely by a client application.

o Retrieve data.

o Update data.

o Create new data.

o Generate reports.

 Central process which can make all decisions

that arise due to the distributed nature of this

application.

o For instance, when a client wishes to update

a data, there may be conflicts that need to

be resolved if another client has updated the

same data.

o The server can coordinate conflict

resolution with the client application.

Client Application – Existing application to

interact with server application and end user.

 Existing Browsers.

 Contains all presentation logic.

 Interacts exclusively with the user.

 Communicates with the server application

through HTTPS.

Figure 1

Overall System Architecture

DETAILED DESIGN SPECIFICATIONS

This section includes detailed design specifications.

We have used small descriptive paragraph, activity

diagram, class diagram and data store schema to

better illustrate the functionality of the application

component.

CMS Design Specifications

The CMS is in charge of the operations and

interaction between the user and data. It will decide

the system behavior depending on the user input.

The interaction with the CMS is only for registered

users of the system.

Figure 2

CMS Activity Diagram

Figure 3

CMS Class Diagram

Figure 4

CMS Data Store Schema

IMPLEMENTATION PLAN

This section outlines the process to be taken in

order to implement the Customer Support Tool. The

application will be implemented on a web server

with the requirements for hosting the server

application and the data storage. Once installed, a

data entry will be performed in order to have the

latest company’s list of clients and users in the data

storage. Employee roles will be defined and access

will be determined on each role.

Also, due to the complexity of maintaining a

local application server and smtp server, a web

hosting service will be implemented to reduce down

time risk. A three-month support period will be

provided to assure the application is working as

expected and fix any issues that may have occur

during the implementation phase.

TEST PLAN

 In order to ensure the Customer Support Tool is

working properly as designed, a series of tests will

be performed to validate that the software meets the

customer requirements. To validate the code use for

our application, a series of standards have been

developed for testing each time a change is made. A

source code review is done to validate the code

meets standards. For the functionality validation,

manual tests were performed to ensure the

application has been built with the customer

requirements in mind.

RESULTS

The Customer Support Tool was successfully

implemented and deployed. All components have

passed their Unit Tests and their respective

Acceptance Tests, after executing these tests we

have seen no issue within the tests performed.

FUTURE WORK

The scope of the project was to develop a system

that stores customer support data to facilitate day to

day activities, there are no other functionalities

available to help the company automate other

process. In a future the following functionalities

were identified to improve their system:

 Develop an employee time entry system to

record their working hours.

 Create payroll based on the entered working

hours and the employee rate to facilitate the

payroll process.

 Develop a payroll email notification once the

payment has been processed.

 Develop mobile devices applications to access

the Customer Tool instead of using a Web

Browser.

REFERENCES

[1] C. Horstman, “The Object-Oriented Design Process” in

Object-Oriented Design & Patterns, 2nd ed. NJ, USA: B.S,

ch. 2, 2006, pp. 48-49.

