Deployment of Emergency Response Networks, a Web Application for Management

Neftalí Candelario Soto Master of Engineering in Computer Engineering Advisor: Dr. Nelliud Torres Electrical Engineering and Computer Engineering Department Polytechnic University of Puerto Rico

Abstract — With every passing day, more resources become internet dependent. It's evident that as time passes the share of our daily communications that rely on the internet will only continue to grow. Banking transactions take place online, enterprises rely on Voice over IP to communicate between workplaces, and online social media platforms are the method of choice for most individuals. While these are all welcomed commodities, it does however pose a huge drawback in the event a natural disaster renders the internet unavailable. Response efforts must be well planned and swiftly executed to ensure as little downtime as possible. Emergency Networks must be monitored and managed to ensure proper functionality until normal conditions are reestablished. This paper addresses the hurdles that may be encountered during an event that cripples an existing internet infrastructure and proposes alternatives to deploy and monitor a temporary solution that provides the necessary services while intelligently safeguarding the available bandwidth.

Key Terms — Disaster, Emergency Communications, Emergency Network, Network Deployment, Network Site Database.

INTRODUCTION

Puerto Rico was recently devastated at the hands of hurricane Maria. Almost eight months after the event both the power and communication infrastructures are still struggling to get back on their feet. Although the re-establishment of the power grid is of the upmost importance, one can arguably claim that the hardest aspect to deal with was the lack of communication after the event. Without communication both the government and the citizenship were left powerless. Let's face the facts, such an event can present itself at any moment in the shape of a hurricane, an earthquake or however nature chooses. We've now seen what happens when a nation is unprepared for an event of this magnitude. While we could point out the fact that local service providers were unprepared for an event where the power grid would not be at disposal for the foreseeable their future, formulating a plan to re-establish communications as soon as possible should be one of the country's top priorities. To achieve this goal, we must make optimal use of the resources at hand, including both temporary power sources and temporary network equipment. Once a site has their regular sources for power or internet connectivity back online, the emergency equipment can be moved to another site that still needs the services.

MOTIVATION

Having lived through several months without communications after a natural disaster, I wondered what were the main roadblocks that stood in the way of getting things back to normal. Then, I got the opportunity to work with an emergency response network provided by a nonprofit organization. After months of both maintaining the existing sites and deploying new ones, I realized there are still ways to improve. A tool can be developed to aid in the process. Although there are several needs, the main focus of this application is to provide a way to track site information and do so in a centralized location where all team members may have access on a moment's notice. With such a huge task, there will be several teams tasked with installing, maintaining and decommissioning sites on a day to day basis. Thus, an up to date database of current sites and their resource usage is necessary. More importantly, once a resource is decommissioned in the system, all team members will be made aware of its availability.

PROBLEM

The occurrence of a natural disaster quickly changes the landscape when it comes to the demand of certain resources. What was negligible vesterday could be the most sought out item today. When it comes to power related items, such as generators, batteries and fuel, this is especially true. Having the necessary resources ready is of the upmost importance, but if having them locally available is not viable, having a plan to acquire them is a must. The reality of the situation is that this will be a temporary solution. This means that we'll be dealing with limited resources. This is what makes proper use of those resources so important. The efforts will start by deploying those resources to sites with high priority. This category will be comprised of Emergency Operation Centers, 911 call centers, hospitals and government agencies tasked with coordinating relief efforts. It's important to note that while these sites will be our primary targets for deployment, they will also be the primary targets when it comes to re-establishing power and standard communications. This means that once those sites are re-connected to their normal power and internet connections we can use the emergency equipment on other sites. While not grouped with the sites we previously mentioned, this second group of sites will be in dire need of internet connectivity. In this secondary field we have local businesses such as pharmacies that need the internet for medical insurance submissions, schools need internet to access their grading systems, and the general public needs hotspots to go about their important transactions. This scenario with new deployments, decommissions and redeployments of previously used equipment requires a centralized solution that provides immediate insight on the availability of the IP addressing space, site information such as coordinates, network topology, network components, and site contacts. Any information that makes coordinating relief efforts as easy as possible is crucial. When it comes to our primary targets such as Emergency

Operation Centers and 911 call centers, any delay in the process can be life threatening.

IMPORTANT CONSIDERATIONS

A country which relies heavily on aerial infrastructure for both power and communications, has high exposure to any type of event. Under such circumstances, it's unacceptable that the bulk of the communications grid be dependent on the power authority [1]. Also, given the fact that the demand for fuel will surely rise due to the use of personal generators, it's imperative that the emergency solution provides power based on some form of renewable energy. Gas and diesel generators may seem to be an appealing option, but acquiring and distributing the necessary fuel while the demand is high may be an uphill battle. Another aspect to take into consideration is the fact that topography such as the one found in Puerto Rico requires cell sites at very remote locations due to the mountainy terrain. Some of these sites are very hard to reach for normal vehicles, making it a nightmare for fuel delivery trucks. Due to these limitations, the most widely used form of renewable energy employed at single sites is by far the photovoltaic system. There are however very different requirements depending on the site when it comes to cell sites.

The loss of connectivity at a given site may be caused by loss of power at the site or at some point along the way to the site where the provider's equipment is stored. It can also be caused by the interruption of the cable medium that provides the Depending the service. on damage the infrastructure has suffered, alternate means to connect the site will be required. In the following sections we'll look at the options for connectivity, the sites that may be encountered, and the limitations of the equipment.

POWERING THE SYSTEM

Having technologies that allow us to disseminate internet service to wherever we need it is only one part of the equation. We must also come up with a way to power the cell sites and the sites on the client's side. Since the systems deployed on the user's premises will be very similar to one another, a system to provide power for the necessary equipment may be standardized. An average system with a router, a point to point radio and three access points has an approximate power demand of 100 watts after factoring in the inverter efficiency.

Table 1	
Standard Site Equipment	

Quant	Description	Power Usage
1	MX64W Router	18 Watts
3	MR72 Access Point	42 Watts
1	Ubiquiti P2P Antenna	24 Watts
	Total Approximate Watts:	74 Watts

There are numerous photovoltaic kits at affordable prices that can easily comply with this requirement. It is however a different story when it comes to the cell sites, these should be designed by the provider and should be a standard element when designing a cell site. The capacity of such a system can vary tremendously depending on its purpose and the area it serves.

CELL SITES

A cell site is also known as a cell tower. These sites are placed in strategical locations depending on the topography of the area being served. These sites may be owned by a service provider or they may have a private owner that rents the tower out to one or several providers.

Figure 1 Typical Cell Site

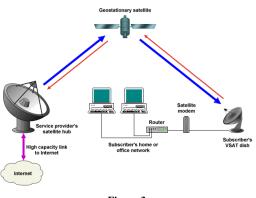
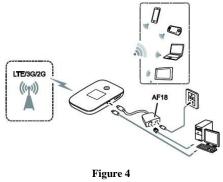
When establishing a plan to deploy an emergency network, the first step is to draft a map with the location of all available cell sites in the area. Once the event itself subsides this map will serve as the starting point when determining cell site availability. The team must identify which towers are functional and which ones are offline due to the event.

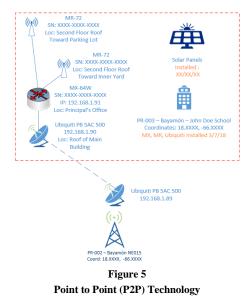
Figure 2 Available Cell Site Map

This map will play a vital role once the client sites are determined. Although proximity is an important factor, other factors such as line of sight will determine the viability of the temporary link.

TOPOLOGY ALTERNATIVES

There are basically three alternatives to provide a temporary internet connection. When there are no landlines functioning and cell towers are unavailable, a Very Small Aperture Terminal (VSAT) is the best option. This type of connection uses a dish similar to those used for satellite television applications, a specialized Low-noise Block Downconverter (LNB), and a Block Upconverter (BUC) to achieve satellite connectivity [2].


Figure 3 VSAT Technology

In areas where a cell tower is functional, sites within the service area may be connected using the wireless signal available whether it be 4g LTE or 3g, commonly used for mobile phone technologies.

3G/4G/LTE Technology

In instances where there is a nearby cell tower, but the coverage does not reach the site, a point to point (P2P) connection may be achieved using antennas in the 2.4Ghz and 5Ghz WI-FI spectrums or by using TV White Space technology which take advantage of unused frequencies in the TV channel spectrum.

At the end of the day, there is no "one size fits all" solution that can be deployed at any site. It all depends on cell positioning, the surrounding geography, site size and site peculiarities. That's why we need a tool that can keep track of all the relevant information at each site and present it in an organized manner no matter where, or who the user is.

Developing the Web Based Application

Now that we've had a better outlook at the equipment that comprises a provisional network. Let's dive into the focus of our project. To develop the Web Application we're interested in, we must first look at the needs we need to fulfill.

Table 2 Functional Requirements

Requirement	Description
Ability to register new	Allows the creation of
sites while requiring that	sites including a
crucial data be included	unique site ID, site
	coordinates and install
	date.
Ability to register system	Inventory must be
components	easily registered in the
-	database. It must
	include the site
	number where it has
	been deployed or if it's
	at a warehouse.
Ability to keep track of	Decommissioned sites
decommissioned sites and	and proposed sites
proposed sites	must have their
	separate unique ID's
	and a separate view.
Ability to register	This equipment must
generators and PV systems	be registered in the
	database and it must
	provide the current
	location whether it's
	been deployed, or it's
	stored at a warehouse.
Ability to register site	Contact individuals for
contacts	each site must be
	registered in the
	system.
Ability to register Service	There will be different
Providers and their contact	backhaul providers
information	depending on the area
	being worked on. The
	system must keep
	track of this
	information

Platform Specifics

The following table contains the specifics for the system and the development tools used for this project.

Table 3

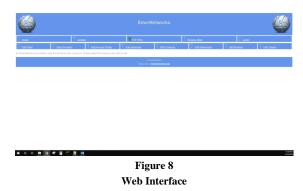
Platform Specifics					
Component	Description				
Database Software	MySQL Version				
	5.7.17				
Development	PHP Version 5.6.30				
Environment					
Web Server	Apache 2.4.25				
Web Browser	Compatibility with				
	the latest versions of				
	Microsoft Edge,				
	Mozilla Firefox,				
	Google Chrome and				
	most browsers				
Usability	Simple and friendly				
	user interface.				

Designing and Creating the Database

With our requirements outlined, we can now start designing our schema [3].

- **SITES** (<u>site id</u>, location, site_name, latitude, longitude, inst_date, status, con_type, backhaul, prov_id).
- PROVIDERS (prov_id, prov_name, prov_phone).
- ACCESS_POINTS (<u>ap_num</u>, serial_num, manufacturer).
- **ANTENNAS** (<u>ant_num</u>, serial_num, manufacturer, model, cur_site, ip_address).
- **CONTACTS** (<u>site id</u>, contact_name, phone_no).
- **GENERATORS** (<u>gen_num</u>, serial_num, manufacturer, model, cur_site, ip_address).
- **ROUTERS** (<u>router num</u>, serial_num, manufacturer, model, cur_site, ip_address).
- **TOWERS** (<u>tower id</u>, location, site_name, latitude, longitude, inst_date, status).

We've now defined the entities and the attributes that will be part of our database. A simple Entity Relation Diagram (ERD) will serve to establish the relationships between the entities. In figure 6 we can see the ERD diagram for our schema.



Once our database has been designed and our relations have been determined, we may commence with the implementation. For this project we will use mySOL to implement the database. Figure 7 shows an example of one of our relations once it has been created and data has been recorded. The table being displayed shows the "sites", which is the main relation in our schema. It contains information about every site that is active, decommissioned or planned for assessment. Other information such as location data is documented along with an assigned site number. It's crucial that this information be available at all times due to the fact that the team that installs the equipment may not necessarily be the one performing the maintenance and the decommissions.

	E coveres	1. 10			H husert all Export	THE surfaces	· · · · · · · · · · · · · · ·			S Inter	., .	withter
	I Showing	prowe 0 - 1	0 (11 total Query Is	nik 0.0023 seco	nds.)							
Neu bookgrama	38141T * 190	e 'sizes'										
ememetwork												
New Access points												
anternas	ii Shra	at No	nbey of rouns 25	 Filter 	rows: Search this table	Sort by he	ry None		1			
e confacta												
generators lei providera	+ Opfore +- T-+			location	alte name	latitude	longhole	lost date	status	con type	prov. Id	hackha
routers	U /ta	SH Copy	Delete PR-01	Abonite	Municipal Hall	18 139493	-66 205936	2017-10-27		P2P	FILLE	
ir sites ir towars	LI DER	SH Copy	Delete PR.02	Barranquitas	Municipal Hall	18.18646	-66.305838	2017-01-03	Active	U.E.		
sportcantesania	U / ER	I Cape	Dalata PR-03	Bayamon	Banco Alimentos PR	18.405791	66 19459	2017-10-17	Active	P2P		
	E DER	TA Copy	Duiss FR-65	Bayamon :	Regizzal Staging Area 1	18 3/43/2	-86 139283	2117-10-10	Active	820		
	E /Eak	H Copy	O Delete PR-05	Ciales	Fire Station	18 33789	-66 468349	2017-10-17	Active	VSAT		
	U JER	TH COPE	O Delett PR-06	Ciales	Toritain Rivera Sicheel	18.303773	66.55534	2110-03-01	Active	P2P		
	D /Em	Se Copy	Oblete PR-07	Ciales	Sabana Basketball Court	10.303757	-66 532272	2018-02-22	Active	P2P		
	D JER	H Cars	Outube PR-05	Corozal	Emergency Operation Center	18.339767	-05.310122	2017-03-14	Active	LTE		
	E /Ea	H Copy	Duke PR-09	Humeces	Ria Abajo School	18.965793	-65.779054	2010-01-20	Active	P2P		
	G . ER	Be Copy	Delete FR-10	Juana Diaz	Emergency Operation Center	18.85206111	66.4594444	2117-11-17	Actes	P2P		
	0 /18	H Carr	O Delete PR-100	San Juan	STC Warehouse	18.427414	-86.070916	2817-09-25	Adina	NA .		

Database Relation

The database will now need a web-based user interface to access and edit the data. Our code will be written using PHP and the application will be hosted using Apache. In figure 8 we see an example of our main webpage and the user interface.

The user may select different filters, so the search criteria may be adapted to his needs. In figure 9 we can see a site search that uses the location filter. The user may select other filters such as the site ID or the site name to conduct the search. It all depends on the information that he has at hand.

			٤					
T there	1 Centerl	1 Edit Stee	1 Browne Sites	Logia				
Site Search Results:								
Number of sites found: 2								
1. State: PR-40 Location: Engennon Sale Name: Elance Admonttes PR Latitude: 50.402701 Longstude: 401.98400 Status: Active Connection: Syste: R2P Provider ID: Bachmail Tower:								
2. Wei: PR-64 Location: Seguran Sale Naters England Staging Area 1 Latitude: 10.37/1020 Status. Active Consoction Syste: P2P Provider ID: Backmail Tower:								
		é Courteines 13 Pluese sur les <mark>legal information sur</mark>						
🖷 O 🗈 🖿 🛐 🐗 🗑					10.04			
		Figure	9					
	Figure 9 Search Results							

The application presents a user-friendly interface that allows the user to view or alter the existing data in the database. New entries may also be added to the warehouse.

Site ID

Figure 10 Data Logging

CONCLUSION

When preparing for a natural disaster, there is no "one size fits all" solution. The conditions will vary depending on the event, and the solutions implemented in the field must adapt to any given scenario. The resources available will be shuffling between sites through the project lifecycle. This application will provide a centralized and robust tool that will keep track of the current inventory whether it's currently deployed, or it's ready for deployment at a storage site. It will also provide a live summary of the IP number space for the assigned network ID. This will avoid having issues with duplicate IP's that would otherwise cause conflicts within the network. The plans and methods discussed in this paper aim to be as flexible as possible.

REFERENCES

- N. Akpan. (2018, Mar. 20). Puerto Rico went dark 6 months ago. Could a solar smart grid prevent the next energy disaster? [Online]. Available: https://www.pbs.org/ newshour/science/puerto-rico-went-dark-6-months-agoheres-how-solar-energy-may-speed-the-recovery. [Accessed: May 6, 2018].
- [2] A. Schriber. (2014, Dec. 22). VSAT Defined: What is it and How Does It Work? [Online]. Available: internet-accessguide.com/vsat-defined-what-is-it-and-how-does-it-work/. [Accessed: May 6, 2018].
- [3] P. J. Pratt & M. Z. Last, "A Guide to SQL," in Boston MA: Course Technology-Cengage Learning, 2009.