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Abstract ⎯ A computational model for 

representing an Electric Charge Trajectory within 

a magnetic field can be used to establish the basis 

for further development and research on the plasma 

physics domain. Regardless the mathematical 

models used for such simulations, constraints are 

always present. Particularly in terms of accuracy of 

the output, time for processing, and amount of 

information. This paper presents a comparison 

between three processing models on a Windows 

HPC environment using: MPI, Microsoft Task 

Parallel Library, and simple programming. By 

using concepts of object oriented programming 

with C#, high performance computing with parallel 

processing, and system integration with ParaView 

or MATLAB for scientific visualization, an entire 

solution is provided to help on understanding the 

basis for plasma physics by means of a high 

capacity computer simulation. 

Key Terms ⎯ Object Oriented Software 

Design, Parallel Processing, ParaView, Plasma 

Physics. 

INTRODUCTION 

In a software simulation, an attempt to 

represent a real life event is achieved by means of 

mathematical models. By using computers to 

perform these calculations, a readable output is 

obtained. As a result, anything that could be 

explained mathematically could be simulated. The 

importance of simulation relays in the fact that it 

provides a way to demonstrate the result of an event 

without the need of real life intervention, that 

otherwise would be expensive in terms of time, 

materials, or damages.  

Moreover, computer simulations usually 

provide the more effective and cheaper alternative 

to experimental measurements [1]. A simulation 

could be as simple as to represent a one direction 

straight motion of a ball, or as complex as to 

represent the properties of materials under shock at 

a high velocity impact. In any case there are 

common processing constraints associated with a 

simulation: accuracy of the output, time for 

processing, and amount of information. To work 

with these processing constraints, a hardware 

platform capable to run as fast as possible is 

needed. Also a high amount of storage to provide 

the output might be needed. However, in addition 

to the hardware side, other challenges arise during 

this process. 

One of these challenges that software engineers 

face, is to understand the domain of the problem 

[2]. Having certain knowledge on the domain of the 

problem may result in more accurate software, with 

less re-decoding effort or a faster delivery of the 

solution. This is critical, especially during the 

design of software for simulation. When developing 

software for simulation, the mathematical models 

that represent them have to be understood.  These 

mathematical models are the domain requirements 

for the system. A major problem with domain 

requirements is that they are written in the language 

of the application domain, mathematical formulas 

in our case, and it is often difficult for software 

engineers to understand them [2]. 

In addition to understanding the domain of the 

problem, determining if the system could be 

implemented is another challenge. As part of the 

software engineering process, a feasibility study to 

identify the technology that could be used, and the 

integration of existent components of hardware and 

software to speed up the delivery of the system was 

a first step on all this work. However, in the case of 

the simulation, some aspects of the implementation 



could not be determined until the domain of the 

problem is understood. Typically software 

engineers may oversee this part of the lifecycle 

process, ending up in a restart of the entire lifecycle 

process due to hardware constraints. Even if the 

programming code of the system may be written as 

100% portable code, for simulation software, the 

hardware part is also very important.  The 

performance of the system, as an overall, can be 

determined generally based on the hardware.  

PROBLEM DEFINITION 

The problem to be solved in this project is a 

simulation based on the Lorentz force equation. 

The formula is given by:  

𝐹 = 𝑞 ∙  𝑣⃗𝑞  ×  𝐵⃗⃗  (1) 

In (1), q is the charge of the particle, 𝑣𝑞⃗⃗⃗⃗⃗ is the 

velocity of the particle, and 𝐵⃗⃗ is the magnetic field 

that the particle is experiencing on a specific 

position. To obtain the motion of the particle, 

equation at (1) is related to Newton’s second law of 

motion equation: 

𝐹 = 𝑚 ∙ 𝑎⃗ (2) 

where: 

  𝑎⃗ =
𝑑𝑣⃗⃗

𝑑𝑡
=  

(𝑣1⃗⃗ ⃗⃗ ⃗− 𝑣0⃗⃗ ⃗⃗ ⃗) 

∆𝑡
  (3) 

Assuming a particle is placed in an initial 

position in space 𝑃0
⃗⃗⃗⃗⃗, with an initial velocity 𝑣0⃗⃗⃗⃗⃗, and 

under a magnetic field 𝐵0
⃗⃗⃗⃗ ⃗, the particle next 

position, and next velocity, can be calculated, 

provided that the magnetic field on that next 

position is known. 

Proof of Concept 

By combining equations in (1), (2) and (3), the 

following is obtained: 

𝑚 ∙  
(𝑣1⃗⃗ ⃗⃗ ⃗− 𝑣0⃗⃗ ⃗⃗ ⃗)

∆𝑡 
=  𝑞 𝑣0⃗⃗⃗⃗⃗  × 𝐵0

⃗⃗⃗⃗ ⃗   (4) 

Then, by dividing the mass (m) on both sides 

of (4), the following is obtained: 

𝑎⃗ =
(𝑣1⃗⃗ ⃗⃗ ⃗− 𝑣0⃗⃗ ⃗⃗ ⃗)

∆𝑡 
=  

𝑞

𝑚
∙ 𝑣0⃗⃗⃗⃗⃗  × 𝐵0

⃗⃗⃗⃗ ⃗ (5) 

And finally, by multiplying (5) by ∆𝑡 on both 

sides the resultant equation is: 

(𝑣1⃗⃗⃗⃗⃗ −  𝑣0⃗⃗⃗⃗⃗) =  
𝑞

𝑚
∙ (𝑣0⃗⃗⃗⃗⃗  × 𝐵0

⃗⃗⃗⃗ ⃗) ∙ ∆𝑡        (6) 

Based on (6), the next velocity based on the 

initial can be expressed as: 

𝑣1⃗⃗⃗⃗⃗ =  
𝑞

𝑚
∙ (𝑣0⃗⃗⃗⃗⃗  × 𝐵0

⃗⃗⃗⃗ ⃗) ∙ ∆𝑡 + 𝑣0⃗⃗⃗⃗⃗  (7) 

 By determining 𝑎⃗ from (4) and replacing in 

(7), 𝑣1⃗⃗⃗⃗⃗ can also be expressed as: 

𝑣1⃗⃗⃗⃗⃗ =  𝑎0⃗⃗⃗⃗⃗ ∙ ∆𝑡 + 𝑣0⃗⃗⃗⃗⃗   (8) 

Knowing the initial position 𝑃0
⃗⃗⃗⃗⃗, velocity 𝑣0⃗⃗⃗⃗⃗, 

time ∆𝑡 , and acceleration 𝑎0, the next position 𝑃1
⃗⃗ ⃗⃗  

can be obtained as: 

𝑃1
⃗⃗ ⃗⃗ = 𝑃0

⃗⃗⃗⃗⃗  + 𝑣0⃗⃗⃗⃗⃗  ∙ ∆𝑡 +
1

2
 ∙ 𝑎0⃗⃗⃗⃗⃗ ∙ (∆𝑡 )

2  (9) 

For the time component it is important to 

understand that the movement of a charged particle, 

under a constant magnetic field, is in general a 

helix [3]. This type of motion follows a circular 

rotation toward one direction with a guiding center. 

Therefore, for the time component, a frequency of 

rotation is associated with the motion by: 

𝜔 =  
𝑞

𝑚
∙ 𝐵⃗⃗ =

2𝜋

𝑡
   (10) 

as a result :  

 𝑡 =  
2𝜋∙𝑚

𝑞∙𝐵⃗⃗
   (11) 

Based on (11) it is possible to know the time it 

takes a charged particle to perform one rotation. 

However, in our case, the magnetic field is variable 

on each position. This implies that the time 

component is different on each position. To 

determine the next position, a small piece or 

fraction of the entire rotation time must be 

obtained. This can be expressed as: 

∆𝑡 =  𝑥𝑡 = 𝑥 ∙  
2𝜋∙𝑚

𝑞∙𝐵⃗⃗
  (12)  

where x < 1. 

One important aspect of these equations is to 

understand their dependencies. In our case, (9) 



cannot be determined until 𝑎0⃗⃗⃗⃗⃗ is determined in (4). 

And (4) cannot be determined until ∆𝑡 is 

determined (12). This may be a challenge for the 

processing time, if not controlled by the program 

flow. However, in this case, all particles will follow 

the same fairness or sequence of calculations. This 

means the program unit will execute in a serial way 

for one particle, but a parallelism attempt is made 

for a greater amount of particles. 

Problem Constraints 

In order to perform the simulation, the 

following constraints have to be met: 

• All vectors are represented with values for i, j, 

and k. 

• 𝑃0
⃗⃗⃗⃗⃗ is a position vector with values at Px, Py, and 

Pz, whose magnitude is not zero (0). 

• 𝑣0⃗⃗⃗⃗⃗ is a velocity vector with values at vx, vy, and 

vz, whose magnitude is not zero (0). 

• 𝐵0
⃗⃗⃗⃗ ⃗ is the magnetic field present at the initial 

position (𝑃0
⃗⃗⃗⃗⃗) with values at Bx, By, and Bz, 

whose magnitude is not zero (0). The magnetic 

field shall be present always. 

• A particle q is an electric charge e, for instance, 

all particles have the same mass and charge 

given by: 

m = 9.10938188 × 10-31 Kg 

q = 1.60217646 × 10-19 C 

• Total distance to calculate the trajectory is a 

cylinder with dimensions of 60 cm width for x, 

25 cm height for y, and 25 cm depth for z. 

• All units are in metric notation: N for Newton, 

C for coulombs, T for Teslas, A for Amperes, g 

for grams, and m for meters. Any of these units 

can be superseded by Kilo(k), Centi(c), 

Mili(m), Micro(µ), or Nano(n) 

• Time is measured in seconds and Frequency in 

Hertz (1/s). And it is a fractional value, small 

enough, that allows for a higher precision.  

All these constraints can be modified on future 

implementations for the same system. 

Accuracy vs. Iterations 

An important aspect of this problem is to 

understand the impact on the accuracy of the 

calculations. While the value for the time can be 

calculated as expressed in (12), the displacement of 

the particle has to be small enough to provide the 

accuracy of the motion. This implies that several 

calculations have to be made for (4) in a very small 

fraction of time to obtain: 

𝑎⃗ =  lim
𝑡→0

𝑑𝑣⃗⃗

𝑑𝑡
   (13) 

By using a very small fraction of the time, an 

entire non-linear motion is being represented with 

linear equations. In this case, the accuracy is highly 

dependent on the granularity of the values and the 

amount of iterations used to project just one 

rotation. Given the constraint on the distance to 

move, from 0 to 60cm in x, or from 0 to 25 cm in y 

or z, several iterations have to be made to obtain the 

displacement.  

To provide an idea on the importance of the 

accuracy vs. amount of iterations, consider Figure 

1. In this example, the followings are assumed: an 

electric charge with an initial velocity of (1, 0, 0) 

km/s, an initial position of (0, 0, 0) cm, and a 

constant magnetic field of (1, 0, 0) mT.  

By using (12), (4) and (9), it can be observed 

that the fraction of time used for 10,000 iterations 

yields to different results for the position in x. For a 

fraction of time of 0.1 the particle has been 

displaced a total of 3.55 cm, very distant. While for 

a fraction of time of 0.001, the particle has been 

displaced only 0.356 mm, very close. The accuracy 

obtained by decreasing the fraction of time, as 

established in (13), while it provides more 

information it is also more detailed. This is an 

important concept to understand the computational 

power required to perform these simulations.  

As more precision is required, the value for the 

fraction of time has to be decreased. This project 

considers operating in the range of 1x10-6 to 1x10-9. 



 
Figure 1 

Distance in X for Different Fractions of Time 

THE HIGH PERFORMANCE COMPUTING 

APPROACH 

Today’s processors are aimed to perform more 

tasks with less power consumption [4]. Most of the 

actual CPUs available on the market are multi core. 

In order to obtain the most out of these CPU, it is 

required a change in the programming approach 

[5]. While most schools today topics are for using 

visual development tools to exploit the usability of 

a system, performing computations to run 

simulations is other topic. Even though it is 

possible to run this simulation on a six core CPU, to 

accomplish that, new hardware and some 

parallelization on the program is required. To solve 

the problem, is possible to obtain a more precise 

result with large amount of iterations using a high 

performance computing cluster. 

Hardware Availability   

At the Polytechnic University of Puerto Rico, 

in the Computer Engineering Laboratory, a total of 

four high performance computers (HPC) clusters 

are available. Two of them are SGI proprietary 

processors, closed systems. Due to lack of support 

documentation, a decision was made to not work on 

those clusters. The other two clusters available are 

Intel/AMD based, running ROCKS cluster software 

Release 4.2.1.  ROCKS is an optimized Linux for 

running on clusters to perform job schedules and 

parallelism. One of the clusters was updated from 

ROCKS 4.3 x64 to release 5.4 x64 bit. This cluster 

is based on DELL© PowerEdge servers, with the 

head node based on Intel© CPU, and 16 compute 

nodes based on AMD© CPU. This cluster provides 

simulations with MATLAB Distributed Computing 

Server R2011a. One of the options available is to 

provide the visualization of the output obtained 

from the simulation with MATLAB.  

For the simulation project, the hardware 

platform consists of a high performance computer 

cluster based on DELL© PowerEdge servers, with 

one head node and 32 compute nodes. Each 

machine has two Intel Xeon Nocona processors of 

2.8GHz. This processor is a single core/single 

thread 64 bit CPU, with 1MB L2 Cache, and 800 

MHz FSB speed. Table 1 lists the basic 

specifications of this cluster. 

This cluster was totally changed and 

reconfigured, from ROCKS cluster software 

Release 4.2.1 x64, to Microsoft Windows HPC 

2008R2. This is a 64 bit operating system that 

provides the optimization for managing a High 

Performance Computing environment plus the .Net 

framework for parallel task programming.  

Windows HPC provides up to five Network 

Topology configurations [6]. As Figure 2 illustrate, 

the actual network configuration on the head node 

is Topology 1. On the Private network adapter, all 

compute nodes are connected through a dedicated 

SMC Tiger 48 ports switch at 1 Gbps and isolated 

from the public.  

To provide access to the Windows HPC head 

node from the public network, the Enterprise 

network adapter is connected to a public switch at 

100 Mbps. The head node is the only one that can 

contact, manage, and distribute all the jobs to the 

compute nodes. 

Table 1 

Windows Based HPC Cluster Hardware Specifications 

Model CPU RAM HD Purpose 

PowerEdge 

1850 

IntelXeon 

2.8GHz 

2 GB SCSI 

68.24GB 

Head 

Node 

PowerEdge 

SC1425 

IntelXeon 

2.8GHz 

2 GB ATA 

37.25GB 

Compute 

Node 

3.55E-02

3.56E-03

3.56E-04
0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

4.0E-02
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Figure 2 

Network Configuration Topology 

The HPC Operating System Deployment 

Installing Windows HPC 2008R2 is very 

simple. The operating system has to be installed 

first on the Head Node. For the PowerEdge 1850, 

the driver for the DELL PERC 4e/Si RAID 

controller is not automatically recognized; it had to 

be loaded during the installation process. Once the 

head node is ready, as Figure 3 shows, a 

deployment template for the compute nodes has to 

be created. This template provides, among other 

things, the steps to install and configure the 

compute node. 

 

Figure 3 

Default Deployment Template for the Compute Nodes 

In order to start the deployment process, it is 

enough to turn on the compute node and boot it 

from the network via PXE, while the Head Node 

accepts all PXE requests. 

With this deployment approach there are some 

disadvantages. Every time the compute node is 

rebooted, the template will be reapplied to the same 

hardware. This implies that the head node will 

automatically generate and assign a new node 

name, a new IP address, and reinstall everything 

from the beginning on the compute node.  

To avoid this, Windows HPC provides to 

proactively add the compute nodes through an 

import of an XML file definition. The file basically 

contains the Machine GUID, and MAC Address.  

This guarantees a persistent deployment whenever 

the same hardware is rebooted. The template will 

be reapplied with the same computer name, IP 

address, and remaining configuration for the same 

hardware.  

Although it is possible to install an alternate 

job scheduler, the native Windows job scheduler 

engine is the preferred choice for this project. 

Microsoft job scheduler engine provides for two 

types of tasks, basic task, and parametric tasks. A 

basic task uses a single command line that includes 

the command to run, along with the metadata that 

describes how to run the command. While a 

parametric task contains a command line with 

wildcards, allowing the same task to be run many 

times with different inputs for each step [7]. 

THE SOFTWARE COMPONENT 

Using Windows HPC as the Operating System 

platform allows running .Net programming on the 

Windows HPC cluster. The programming language 

used in this project is C#, which allows for 

integration with MPI [8] and with the Windows 

Task Parallel Library for .Net.   

The Windows Task Parallel Library is a new 

set of class library types, available to simplify 

parallel development [9]. It allows for parallel code 

to be written without having to work directly with 

threads or thread pools. 



Algorithm Description 

The target of the program is to provide the 

position of several charge particles. These particles 

are free electrons at an initial position, and with an 

initial velocity. For each particle, the positions and 

velocities are generated uniformly or randomly and 

stored on a single file to be used as input to the 

program. This file is as big as the amount of 

particles required to simulate.  

The Magnetic field for the surroundings is 

provided by a separate class that calculates the 

magnetic field at any given point. The Magnetic 

field follows a Gaussian distribution for a cylinder 

with two circular loops on each end of the cylinder. 

This is equivalent to the Plasma Chamber available 

at the Plasma Research Laboratory at Polytechnic 

University of P.R.  

As illustrated in Figure 4, for each particle’s 

position, the Magnetic Field is obtained from an 

external class. This is used to determine ∆𝑡 by 

using (12) with a predefined scaling factor for x. 

Afterward, the program calculates (5), (8), and 

finally (9) to obtain the next position. This position 

is provided again to the Magnetic Field external 

class, and the cycle repeats until the maximum 

amount of iterations are reached. These steps for 

one particle, is programmed to execute on one 

single CPU thread. 

Iteration < Total 

Iterations?

Generate File 

with Particles 

initial Position 

and Velocities

Start for each particle 

End for each particle 

Obtain the 

magnetic field (B) 

on current position

Calculate the time (t)

t = xt

Calculate Next 

Position(P)

No

End

Yes

On each CPU Core

Store Particle 

Position to File

Store Start Time

Store End Time

Number of 

Particles 

and Total 

Iterations.

 

Figure 4 

Basic Program Flow  

Parallelism Technique 

The file generated with the particles position 

and velocities is shared among all compute nodes. 

Windows HPC provides a shared repository for 

such scenarios.  

Since each compute node has only two CPU, 

when two particles are analyzed, it is expected that 

one goes to one CPU and the other particle goes to 

the second CPU. If more than two particles are 

needed to be analyzed by a single node, then each 

particle will follow the assigned pipeline by the 

compute node internal CPU control. At the moment 

of submitting the job, the particles shall be equally 

distributed among all the available compute nodes. 

Under some circumstance, where no equal 

distribution can occur, some nodes may have more 

particles than others.  

The program stores on a distinct file the start 

and end time it took for analyzing a single particle. 

This will help on doing the comparison for the 

testing scenarios. 

TESTING SCENARIOS 

For testing purpose of this project, the same 

program is written in three different formats: 

• Format 1: simple program with no parallelism 

libraries incorporated or multithread calls. 

• Format 2: program with MPI library calls. 

• Format 3: program with Windows Task 

Parallel Libraries calls. 

To determine the best approach for the 

simulation, a comparison in performance between 

the different distribute computing techniques is 

required. The following steps are performed to help 

on the comparison: 

• Determine the amount of available compute 

nodes and find out the total amount of particles 

to process by multiplying the amount of 

compute nodes by 4. 

• Generate the initial positions and velocities 

file, and place it in the shared repository. 

• Send the Format 1 program, with no 

parallelism implemented, to a single node with 



all particles. This will be called the baseline for 

all future comparisons. 

• Send the Format 2 program with MPI to all 

available nodes. 

• Send the Format 3 program to all available 

nodes, in such a way that each node will 

calculate for 4 particles. This will require MPI 

plus Task Parallel Library. 

VISUALIZATION OF THE SIMULATION 

Although it is not a requirement, a simulation 

is not complete without a visualization component. 

The important part of the simulation is to take 

decisions or learn something new based on the 

output. For the visualization part, two options are 

available: MATLAB or PARAVIEW. In either 

case, the output of the program has to be formatted 

to be processed by the preferred tool.  

Proposed Solution with ParaView 

ParaView is an open-source, multi-platform 

application for the visualization and analysis of 

scientific datasets [10]. The advantage of using 

ParaView is the easy to use interface and the 

powerful filter capabilities it provides. Also, it can 

be run on a client-server environment. In addition, 

ParaView can open files from several formats. To 

install ParaView on the Windows HPC cluster head 

node was very simple. However, to allow for 

parallel processing of the visualization, ParaView 

needs to be installed on each compute node as well. 

Alternate Solution with MATLAB 

The advantage of using MATLAB is that it 

runs on a separate cluster, so the Windows HPC 

cluster can be performing new calculations, and 

generating a new file, while the MATLAB cluster 

is processing the file for visualization. The 

shortcoming to this approach relies on the file 

transfer due to the file size, however, the 

communication between the Windows HPC cluster 

and the MATLAB cluster is via the Public Network 

at 1 Gbps. Once the file is in the MATLAB cluster 

it can be processed using the proper MATLAB 

visualization toolbox from a client PC. 

 PROJECT RESULTS 

From the testing scenarios, a total of 20 nodes 

were used. The graph on Figure 5 illustrates the 

results on execution time for each processing 

technique used for the same simulation. The 

execution for the single node was the slowest, 

taking a considerable amount of time to complete 

execution. The execution with the MPI was the 

faster, while the execution with MPI + Task 

Parallel Library was slower than MPI alone. 

 CONCLUSIONS AND FUTURE PLANS 

By comparing MPI with Task Parallel Library 

combined with MPI, we can conclude that MPI is 

faster for this hardware implementation. This 

project provides the baseline for further research in 

Plasma Physics. It allows also, to other graduate or 

undergraduate future candidates, to integrate other 

conditions into the program, like for example 

analyzing the addition of an Electrical Field 

variable to the equation. It is possible that such 

alterations change the results in performance 

obtained in this paper. 

For future works, the MATLAB cluster can be 

used to provide the visualization part of the 

simulation. Alternatively, Paraview also can be 

installed on the MATLAB cluster as well. 

Other conditions, like adding more nodes can 

be evaluated. 

 
Figure 5 

Processing Technique vs. Time in Seconds 
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