
Electric Charge Trajectory Simulation: A High Performance Computing Approach

Jose R. Medina Delgado

Computer Engineering

Yahya Masalmah, Ph.D.

Electrical & Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract ⎯ A computational model for

representing an Electric Charge Trajectory within

a magnetic field can be used to establish the basis

for further development and research on the plasma

physics domain. Regardless the mathematical

models used for such simulations, constraints are

always present. Particularly in terms of accuracy of

the output, time for processing, and amount of

information. This paper presents a comparison

between three processing models on a Windows

HPC environment using: MPI, Microsoft Task

Parallel Library, and simple programming. By

using concepts of object oriented programming

with C#, high performance computing with parallel

processing, and system integration with ParaView

or MATLAB for scientific visualization, an entire

solution is provided to help on understanding the

basis for plasma physics by means of a high

capacity computer simulation.

Key Terms ⎯ Object Oriented Software

Design, Parallel Processing, ParaView, Plasma

Physics.

INTRODUCTION

In a software simulation, an attempt to

represent a real life event is achieved by means of

mathematical models. By using computers to

perform these calculations, a readable output is

obtained. As a result, anything that could be

explained mathematically could be simulated. The

importance of simulation relays in the fact that it

provides a way to demonstrate the result of an event

without the need of real life intervention, that

otherwise would be expensive in terms of time,

materials, or damages.

Moreover, computer simulations usually

provide the more effective and cheaper alternative

to experimental measurements [1]. A simulation

could be as simple as to represent a one direction

straight motion of a ball, or as complex as to

represent the properties of materials under shock at

a high velocity impact. In any case there are

common processing constraints associated with a

simulation: accuracy of the output, time for

processing, and amount of information. To work

with these processing constraints, a hardware

platform capable to run as fast as possible is

needed. Also a high amount of storage to provide

the output might be needed. However, in addition

to the hardware side, other challenges arise during

this process.

One of these challenges that software engineers

face, is to understand the domain of the problem

[2]. Having certain knowledge on the domain of the

problem may result in more accurate software, with

less re-decoding effort or a faster delivery of the

solution. This is critical, especially during the

design of software for simulation. When developing

software for simulation, the mathematical models

that represent them have to be understood. These

mathematical models are the domain requirements

for the system. A major problem with domain

requirements is that they are written in the language

of the application domain, mathematical formulas

in our case, and it is often difficult for software

engineers to understand them [2].

In addition to understanding the domain of the

problem, determining if the system could be

implemented is another challenge. As part of the

software engineering process, a feasibility study to

identify the technology that could be used, and the

integration of existent components of hardware and

software to speed up the delivery of the system was

a first step on all this work. However, in the case of

the simulation, some aspects of the implementation

could not be determined until the domain of the

problem is understood. Typically software

engineers may oversee this part of the lifecycle

process, ending up in a restart of the entire lifecycle

process due to hardware constraints. Even if the

programming code of the system may be written as

100% portable code, for simulation software, the

hardware part is also very important. The

performance of the system, as an overall, can be

determined generally based on the hardware.

PROBLEM DEFINITION

The problem to be solved in this project is a

simulation based on the Lorentz force equation.

The formula is given by:

𝐹 = 𝑞 ∙ 𝑣⃗𝑞 × 𝐵⃗⃗ (1)

In (1), q is the charge of the particle, 𝑣𝑞⃗⃗⃗⃗⃗ is the

velocity of the particle, and 𝐵⃗⃗ is the magnetic field

that the particle is experiencing on a specific

position. To obtain the motion of the particle,

equation at (1) is related to Newton’s second law of

motion equation:

𝐹 = 𝑚 ∙ 𝑎⃗ (2)

where:

 𝑎⃗ =
𝑑𝑣⃗⃗

𝑑𝑡
=

(𝑣1⃗⃗ ⃗⃗ ⃗− 𝑣0⃗⃗ ⃗⃗ ⃗)

∆𝑡
 (3)

Assuming a particle is placed in an initial

position in space 𝑃0
⃗⃗⃗⃗⃗, with an initial velocity 𝑣0⃗⃗⃗⃗⃗, and

under a magnetic field 𝐵0
⃗⃗⃗⃗ ⃗, the particle next

position, and next velocity, can be calculated,

provided that the magnetic field on that next

position is known.

Proof of Concept

By combining equations in (1), (2) and (3), the

following is obtained:

𝑚 ∙
(𝑣1⃗⃗ ⃗⃗ ⃗− 𝑣0⃗⃗ ⃗⃗ ⃗)

∆𝑡
= 𝑞 𝑣0⃗⃗⃗⃗⃗ × 𝐵0

⃗⃗⃗⃗ ⃗ (4)

Then, by dividing the mass (m) on both sides

of (4), the following is obtained:

𝑎⃗ =
(𝑣1⃗⃗ ⃗⃗ ⃗− 𝑣0⃗⃗ ⃗⃗ ⃗)

∆𝑡
=

𝑞

𝑚
∙ 𝑣0⃗⃗⃗⃗⃗ × 𝐵0

⃗⃗⃗⃗ ⃗ (5)

And finally, by multiplying (5) by ∆𝑡 on both

sides the resultant equation is:

(𝑣1⃗⃗⃗⃗⃗ − 𝑣0⃗⃗⃗⃗⃗) =
𝑞

𝑚
∙ (𝑣0⃗⃗⃗⃗⃗ × 𝐵0

⃗⃗⃗⃗ ⃗) ∙ ∆𝑡 (6)

Based on (6), the next velocity based on the

initial can be expressed as:

𝑣1⃗⃗⃗⃗⃗ =
𝑞

𝑚
∙ (𝑣0⃗⃗⃗⃗⃗ × 𝐵0

⃗⃗⃗⃗ ⃗) ∙ ∆𝑡 + 𝑣0⃗⃗⃗⃗⃗ (7)

 By determining 𝑎⃗ from (4) and replacing in

(7), 𝑣1⃗⃗⃗⃗⃗ can also be expressed as:

𝑣1⃗⃗⃗⃗⃗ = 𝑎0⃗⃗⃗⃗⃗ ∙ ∆𝑡 + 𝑣0⃗⃗⃗⃗⃗ (8)

Knowing the initial position 𝑃0
⃗⃗⃗⃗⃗, velocity 𝑣0⃗⃗⃗⃗⃗,

time ∆𝑡 , and acceleration 𝑎0, the next position 𝑃1
⃗⃗ ⃗⃗

can be obtained as:

𝑃1
⃗⃗ ⃗⃗ = 𝑃0

⃗⃗⃗⃗⃗ + 𝑣0⃗⃗⃗⃗⃗ ∙ ∆𝑡 +
1

2
 ∙ 𝑎0⃗⃗⃗⃗⃗ ∙ (∆𝑡)

2 (9)

For the time component it is important to

understand that the movement of a charged particle,

under a constant magnetic field, is in general a

helix [3]. This type of motion follows a circular

rotation toward one direction with a guiding center.

Therefore, for the time component, a frequency of

rotation is associated with the motion by:

𝜔 =
𝑞

𝑚
∙ 𝐵⃗⃗ =

2𝜋

𝑡
 (10)

as a result :

 𝑡 =
2𝜋∙𝑚

𝑞∙𝐵⃗⃗
 (11)

Based on (11) it is possible to know the time it

takes a charged particle to perform one rotation.

However, in our case, the magnetic field is variable

on each position. This implies that the time

component is different on each position. To

determine the next position, a small piece or

fraction of the entire rotation time must be

obtained. This can be expressed as:

∆𝑡 = 𝑥𝑡 = 𝑥 ∙
2𝜋∙𝑚

𝑞∙𝐵⃗⃗
 (12)

where x < 1.

One important aspect of these equations is to

understand their dependencies. In our case, (9)

cannot be determined until 𝑎0⃗⃗⃗⃗⃗ is determined in (4).

And (4) cannot be determined until ∆𝑡 is

determined (12). This may be a challenge for the

processing time, if not controlled by the program

flow. However, in this case, all particles will follow

the same fairness or sequence of calculations. This

means the program unit will execute in a serial way

for one particle, but a parallelism attempt is made

for a greater amount of particles.

Problem Constraints

In order to perform the simulation, the

following constraints have to be met:

• All vectors are represented with values for i, j,

and k.

• 𝑃0
⃗⃗⃗⃗⃗ is a position vector with values at Px, Py, and

Pz, whose magnitude is not zero (0).

• 𝑣0⃗⃗⃗⃗⃗ is a velocity vector with values at vx, vy, and

vz, whose magnitude is not zero (0).

• 𝐵0
⃗⃗⃗⃗ ⃗ is the magnetic field present at the initial

position (𝑃0
⃗⃗⃗⃗⃗) with values at Bx, By, and Bz,

whose magnitude is not zero (0). The magnetic

field shall be present always.

• A particle q is an electric charge e, for instance,

all particles have the same mass and charge

given by:

m = 9.10938188 × 10-31 Kg

q = 1.60217646 × 10-19 C

• Total distance to calculate the trajectory is a

cylinder with dimensions of 60 cm width for x,

25 cm height for y, and 25 cm depth for z.

• All units are in metric notation: N for Newton,

C for coulombs, T for Teslas, A for Amperes, g

for grams, and m for meters. Any of these units

can be superseded by Kilo(k), Centi(c),

Mili(m), Micro(µ), or Nano(n)

• Time is measured in seconds and Frequency in

Hertz (1/s). And it is a fractional value, small

enough, that allows for a higher precision.

All these constraints can be modified on future

implementations for the same system.

Accuracy vs. Iterations

An important aspect of this problem is to

understand the impact on the accuracy of the

calculations. While the value for the time can be

calculated as expressed in (12), the displacement of

the particle has to be small enough to provide the

accuracy of the motion. This implies that several

calculations have to be made for (4) in a very small

fraction of time to obtain:

𝑎⃗ = lim
𝑡→0

𝑑𝑣⃗⃗

𝑑𝑡
 (13)

By using a very small fraction of the time, an

entire non-linear motion is being represented with

linear equations. In this case, the accuracy is highly

dependent on the granularity of the values and the

amount of iterations used to project just one

rotation. Given the constraint on the distance to

move, from 0 to 60cm in x, or from 0 to 25 cm in y

or z, several iterations have to be made to obtain the

displacement.

To provide an idea on the importance of the

accuracy vs. amount of iterations, consider Figure

1. In this example, the followings are assumed: an

electric charge with an initial velocity of (1, 0, 0)

km/s, an initial position of (0, 0, 0) cm, and a

constant magnetic field of (1, 0, 0) mT.

By using (12), (4) and (9), it can be observed

that the fraction of time used for 10,000 iterations

yields to different results for the position in x. For a

fraction of time of 0.1 the particle has been

displaced a total of 3.55 cm, very distant. While for

a fraction of time of 0.001, the particle has been

displaced only 0.356 mm, very close. The accuracy

obtained by decreasing the fraction of time, as

established in (13), while it provides more

information it is also more detailed. This is an

important concept to understand the computational

power required to perform these simulations.

As more precision is required, the value for the

fraction of time has to be decreased. This project

considers operating in the range of 1x10-6 to 1x10-9.

Figure 1

Distance in X for Different Fractions of Time

THE HIGH PERFORMANCE COMPUTING

APPROACH

Today’s processors are aimed to perform more

tasks with less power consumption [4]. Most of the

actual CPUs available on the market are multi core.

In order to obtain the most out of these CPU, it is

required a change in the programming approach

[5]. While most schools today topics are for using

visual development tools to exploit the usability of

a system, performing computations to run

simulations is other topic. Even though it is

possible to run this simulation on a six core CPU, to

accomplish that, new hardware and some

parallelization on the program is required. To solve

the problem, is possible to obtain a more precise

result with large amount of iterations using a high

performance computing cluster.

Hardware Availability

At the Polytechnic University of Puerto Rico,

in the Computer Engineering Laboratory, a total of

four high performance computers (HPC) clusters

are available. Two of them are SGI proprietary

processors, closed systems. Due to lack of support

documentation, a decision was made to not work on

those clusters. The other two clusters available are

Intel/AMD based, running ROCKS cluster software

Release 4.2.1. ROCKS is an optimized Linux for

running on clusters to perform job schedules and

parallelism. One of the clusters was updated from

ROCKS 4.3 x64 to release 5.4 x64 bit. This cluster

is based on DELL© PowerEdge servers, with the

head node based on Intel© CPU, and 16 compute

nodes based on AMD© CPU. This cluster provides

simulations with MATLAB Distributed Computing

Server R2011a. One of the options available is to

provide the visualization of the output obtained

from the simulation with MATLAB.

For the simulation project, the hardware

platform consists of a high performance computer

cluster based on DELL© PowerEdge servers, with

one head node and 32 compute nodes. Each

machine has two Intel Xeon Nocona processors of

2.8GHz. This processor is a single core/single

thread 64 bit CPU, with 1MB L2 Cache, and 800

MHz FSB speed. Table 1 lists the basic

specifications of this cluster.

This cluster was totally changed and

reconfigured, from ROCKS cluster software

Release 4.2.1 x64, to Microsoft Windows HPC

2008R2. This is a 64 bit operating system that

provides the optimization for managing a High

Performance Computing environment plus the .Net

framework for parallel task programming.

Windows HPC provides up to five Network

Topology configurations [6]. As Figure 2 illustrate,

the actual network configuration on the head node

is Topology 1. On the Private network adapter, all

compute nodes are connected through a dedicated

SMC Tiger 48 ports switch at 1 Gbps and isolated

from the public.

To provide access to the Windows HPC head

node from the public network, the Enterprise

network adapter is connected to a public switch at

100 Mbps. The head node is the only one that can

contact, manage, and distribute all the jobs to the

compute nodes.

Table 1

Windows Based HPC Cluster Hardware Specifications

Model CPU RAM HD Purpose

PowerEdge

1850

IntelXeon

2.8GHz

2 GB SCSI

68.24GB

Head

Node

PowerEdge

SC1425

IntelXeon

2.8GHz

2 GB ATA

37.25GB

Compute

Node

3.55E-02

3.56E-03

3.56E-04
0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

4.0E-02

D
is

ta
n

c
e
 i

n
 X

 (
M

e
te

r
s)

Number of Iterations

0.1

0.01

 0.001

Fraction of Time:

Figure 2

Network Configuration Topology

The HPC Operating System Deployment

Installing Windows HPC 2008R2 is very

simple. The operating system has to be installed

first on the Head Node. For the PowerEdge 1850,

the driver for the DELL PERC 4e/Si RAID

controller is not automatically recognized; it had to

be loaded during the installation process. Once the

head node is ready, as Figure 3 shows, a

deployment template for the compute nodes has to

be created. This template provides, among other

things, the steps to install and configure the

compute node.

Figure 3

Default Deployment Template for the Compute Nodes

In order to start the deployment process, it is

enough to turn on the compute node and boot it

from the network via PXE, while the Head Node

accepts all PXE requests.

With this deployment approach there are some

disadvantages. Every time the compute node is

rebooted, the template will be reapplied to the same

hardware. This implies that the head node will

automatically generate and assign a new node

name, a new IP address, and reinstall everything

from the beginning on the compute node.

To avoid this, Windows HPC provides to

proactively add the compute nodes through an

import of an XML file definition. The file basically

contains the Machine GUID, and MAC Address.

This guarantees a persistent deployment whenever

the same hardware is rebooted. The template will

be reapplied with the same computer name, IP

address, and remaining configuration for the same

hardware.

Although it is possible to install an alternate

job scheduler, the native Windows job scheduler

engine is the preferred choice for this project.

Microsoft job scheduler engine provides for two

types of tasks, basic task, and parametric tasks. A

basic task uses a single command line that includes

the command to run, along with the metadata that

describes how to run the command. While a

parametric task contains a command line with

wildcards, allowing the same task to be run many

times with different inputs for each step [7].

THE SOFTWARE COMPONENT

Using Windows HPC as the Operating System

platform allows running .Net programming on the

Windows HPC cluster. The programming language

used in this project is C#, which allows for

integration with MPI [8] and with the Windows

Task Parallel Library for .Net.

The Windows Task Parallel Library is a new

set of class library types, available to simplify

parallel development [9]. It allows for parallel code

to be written without having to work directly with

threads or thread pools.

Algorithm Description

The target of the program is to provide the

position of several charge particles. These particles

are free electrons at an initial position, and with an

initial velocity. For each particle, the positions and

velocities are generated uniformly or randomly and

stored on a single file to be used as input to the

program. This file is as big as the amount of

particles required to simulate.

The Magnetic field for the surroundings is

provided by a separate class that calculates the

magnetic field at any given point. The Magnetic

field follows a Gaussian distribution for a cylinder

with two circular loops on each end of the cylinder.

This is equivalent to the Plasma Chamber available

at the Plasma Research Laboratory at Polytechnic

University of P.R.

As illustrated in Figure 4, for each particle’s

position, the Magnetic Field is obtained from an

external class. This is used to determine ∆𝑡 by

using (12) with a predefined scaling factor for x.

Afterward, the program calculates (5), (8), and

finally (9) to obtain the next position. This position

is provided again to the Magnetic Field external

class, and the cycle repeats until the maximum

amount of iterations are reached. These steps for

one particle, is programmed to execute on one

single CPU thread.

Iteration < Total

Iterations?

Generate File

with Particles

initial Position

and Velocities

Start for each particle

End for each particle

Obtain the

magnetic field (B)

on current position

Calculate the time (t)

t = xt

Calculate Next

Position(P)

No

End

Yes

On each CPU Core

Store Particle

Position to File

Store Start Time

Store End Time

Number of

Particles

and Total

Iterations.

Figure 4

Basic Program Flow

Parallelism Technique

The file generated with the particles position

and velocities is shared among all compute nodes.

Windows HPC provides a shared repository for

such scenarios.

Since each compute node has only two CPU,

when two particles are analyzed, it is expected that

one goes to one CPU and the other particle goes to

the second CPU. If more than two particles are

needed to be analyzed by a single node, then each

particle will follow the assigned pipeline by the

compute node internal CPU control. At the moment

of submitting the job, the particles shall be equally

distributed among all the available compute nodes.

Under some circumstance, where no equal

distribution can occur, some nodes may have more

particles than others.

The program stores on a distinct file the start

and end time it took for analyzing a single particle.

This will help on doing the comparison for the

testing scenarios.

TESTING SCENARIOS

For testing purpose of this project, the same

program is written in three different formats:

• Format 1: simple program with no parallelism

libraries incorporated or multithread calls.

• Format 2: program with MPI library calls.

• Format 3: program with Windows Task

Parallel Libraries calls.

To determine the best approach for the

simulation, a comparison in performance between

the different distribute computing techniques is

required. The following steps are performed to help

on the comparison:

• Determine the amount of available compute

nodes and find out the total amount of particles

to process by multiplying the amount of

compute nodes by 4.

• Generate the initial positions and velocities

file, and place it in the shared repository.

• Send the Format 1 program, with no

parallelism implemented, to a single node with

all particles. This will be called the baseline for

all future comparisons.

• Send the Format 2 program with MPI to all

available nodes.

• Send the Format 3 program to all available

nodes, in such a way that each node will

calculate for 4 particles. This will require MPI

plus Task Parallel Library.

VISUALIZATION OF THE SIMULATION

Although it is not a requirement, a simulation

is not complete without a visualization component.

The important part of the simulation is to take

decisions or learn something new based on the

output. For the visualization part, two options are

available: MATLAB or PARAVIEW. In either

case, the output of the program has to be formatted

to be processed by the preferred tool.

Proposed Solution with ParaView

ParaView is an open-source, multi-platform

application for the visualization and analysis of

scientific datasets [10]. The advantage of using

ParaView is the easy to use interface and the

powerful filter capabilities it provides. Also, it can

be run on a client-server environment. In addition,

ParaView can open files from several formats. To

install ParaView on the Windows HPC cluster head

node was very simple. However, to allow for

parallel processing of the visualization, ParaView

needs to be installed on each compute node as well.

Alternate Solution with MATLAB

The advantage of using MATLAB is that it

runs on a separate cluster, so the Windows HPC

cluster can be performing new calculations, and

generating a new file, while the MATLAB cluster

is processing the file for visualization. The

shortcoming to this approach relies on the file

transfer due to the file size, however, the

communication between the Windows HPC cluster

and the MATLAB cluster is via the Public Network

at 1 Gbps. Once the file is in the MATLAB cluster

it can be processed using the proper MATLAB

visualization toolbox from a client PC.

 PROJECT RESULTS

From the testing scenarios, a total of 20 nodes

were used. The graph on Figure 5 illustrates the

results on execution time for each processing

technique used for the same simulation. The

execution for the single node was the slowest,

taking a considerable amount of time to complete

execution. The execution with the MPI was the

faster, while the execution with MPI + Task

Parallel Library was slower than MPI alone.

 CONCLUSIONS AND FUTURE PLANS

By comparing MPI with Task Parallel Library

combined with MPI, we can conclude that MPI is

faster for this hardware implementation. This

project provides the baseline for further research in

Plasma Physics. It allows also, to other graduate or

undergraduate future candidates, to integrate other

conditions into the program, like for example

analyzing the addition of an Electrical Field

variable to the equation. It is possible that such

alterations change the results in performance

obtained in this paper.

For future works, the MATLAB cluster can be

used to provide the visualization part of the

simulation. Alternatively, Paraview also can be

installed on the MATLAB cluster as well.

Other conditions, like adding more nodes can

be evaluated.

Figure 5

Processing Technique vs. Time in Seconds

0

100

200

300

MPI
MPI +

TPL
Simple

T
im

e
 i

n
 s

ec
o

n
d

s

Processing Technique

ACKNOWLEDGEMENTS

This work was supported in part by the U.S.

Army Research Office under grant W911NF-11-1-

0180.

REFERENCES

[1] Bartoš, P. P.,et al. “Hybrid computer simulations: electrical

charging of dust particles in low-temperature plasma”,

European Physical Journal D 54(2), 2010, p319-323.

[2] Sommerville, Ian, “”,Software Engineering ,8th ed.,

Addison-Wesley, 2007, p

[3] Chen, Francis, F. , “Chapter 2, Single Particle Motions”,

Introduction to Plasma Physics and Controlled Fusion , 2nd

ed. Vol. No. 1, Springer, 1984, p19-49

[4] Koomey, Jonathan, G., et al.”Assessing Trends in the

Electrical Efficiency of Computation Over Time”, IEEE

Annals of the History of Computing ,August 5, 2009

[5] Asanovic, Krste, et al. “A View of the Parallel Computing

Landscape”, Communications of the ACM, Vol. No. 52

Issue 10, October 2009, p56-67

[6] Microsoft Corp., ”Windows HPC Server 2008 R2”,

Appendix 1 – HPC Cluster Networking, Microsoft TechNet

Library, May 2012 http://technet.microsoft.com/en-

us/library/ff919486(v=ws.10).aspx

[7] Microsoft Corp., “Parallel Programming in the .NET

Framework”, .Net Framework 4, Microsoft TechNet

Library, May 2012 http://msdn.microsoft.com/en–us

/library/dd460693.aspx

[8] Robison, A, et al. “Using MPI with C# and the Common

Language Infrastructure”, Technical Report TR570,

Indiana University, School of Informatics and Computing,

Oct. 2002

[9] Microsoft Corp., “Task Parallel Library”, .Net Framework

4, Microsoft TechNet Library, May 2012 http://msdn.

microsoft.com/en-us/library/dd460717.aspx

[10] Kitware, Inc., ParaView User’s Guide (V3.14), May 2012

http://www.itk.org/Wiki/ParaView

