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Abstract  With the development of low power 

electronics and energy harvesting technology, self-

powered systems have become a research hotspot 

over the last decade. The main advantage of self-

powered systems is that they require minimum 

maintenance which makes them to be deployed in 

large scale or previously inaccessible locations. 

Therefore, the target of energy harvesting is to 

power autonomous ‘fit and forget’ electronic system 

over their lifetime. Some possible alternative energy 

sources include photonic energy, thermal energy 

and mechanical energy. The source of mechanical 

energy can be a vibrating structure, a moving human 

body or air water flow induced vibration. The 

primary objective of this project was the 

quantification of the vibration spectrum of an AC fan 

machine, using an accelerometer to provide the 

amplitude for the frequency of the machine. The 

frequency (hz) and magnitude (m/s2) of the signal 

was obtained using Fast Fourier Transform analysis 

from Matlab Signal Processing Tool (SPTOOL).[1] 

The secondary objective was to analyze a 

Measurement Specialties MiniSense 100 Vibration 

Sensor modeled as a single degree of freedom, 

SDOF, base excited unimorph piezoelectric film 

energy harvester using a basic cantilevered beam 

with mass at the tip configuration to calculate the 

maximum power output produced by the system and 

tuned the proposed design to reached a maximum 

power generation. The same analysis was performed 

on the data from the cantilever sensor and the 

frequency of vibrations was obtained. The sensors 

were installed on a rigid base in order to obtain a 

higher stiffness and force transmissibility therefore 

obtaining a strong vibration signal input acting on 

the cantilevered beam. A wide range of research and 

proposed models shows that the maximum power 

output of a resonant energy harvester subjected to 

an ambient vibration is reached when the natural 

angular frequency (𝜔𝑛) of the mass-spring structure 

is tuned to the natural frequency of ambient 

vibrations (𝜔). 

Key Terms  Energy Harvester, Natural 

Frequency, Resonance, Vibration Spectrum.  

INTRODUCTION TO VIBRATION AND FREE 

RESPONSE 

The physical explanation of the phenomena of 

vibration concerns with the interplay between 

potential energy and kinetic energy.  A vibrating 

system must have a component that stores potential 

energy and releases it as kinetic energy in the form 

of motion (vibration) of a mass.  The motion of the 

mass then gives up kinetic energy to the potential-

energy storing device.  

The degree of freedom of a system is the 

minimum number of displacement coordinates 

needed to represent the position of the system’s mass 

at any instant of time.  Free response refers to 

analyzing the vibration of a system resulting from a 

nonzero initial displacement and/or velocity of the 

system with no external force or moment applied. 

The fundamental kinematical quantities used to 

describe the motion of a particle are displacement, 

velocity, and acceleration vectors.  The laws of 

physics state that the motion of a mass with changing 

velocities is determined by the net force acting on the 

mass. 

In the simple case of a hanging mass and spring 

combination with a vertical orientation, and ignoring 

the mass of the spring, the forces acting on a mass 

consist of the forces of gravity pulling down (𝑚𝑔) 

where 𝑚 is the hanging mass and g is the 

acceleration due to gravity, and the elastic restoring 

force of the spring pulling back up (𝑓𝑘).  The 



 

 

equation that describes the force applied by the 

spring (𝑓𝑘) to the mass is a linear relationship, 

𝑓𝑘 = 𝑘𝑦                                                                 (1) 

where 𝑘 is the stiffness of the spring and 𝑦 is the 

displacement of the mass in the 𝑦 direction.  For 

strength of material considerations, a linear spring of 

stiffness 𝑘 stores potential energy of the 

amount  
1

2
𝑘𝑦2.  

In the case of a mass and spring combination 

with a horizontal orientation and assuming that the 

mass moves on a frictionless surface, the sum of all 

the forces on the free body diagram acting along the 

x-direction yields to 

𝑓𝑘 = 𝑘𝑥                                                                 (2) 

𝑚�̈�(𝑡) = −𝑘𝑥(𝑡)  𝑜𝑟  𝑚�̈�(𝑡) + 𝑘𝑥(𝑡) = 0          (3) 

where 𝑥(𝑡) denotes the second time derivative of the 

displacement (i.e. the acceleration). 

The solution this periodic motion based on 

physical observation and experience from watching 

this mass and spring system is 

𝑥(𝑡) = 𝐴 sin (𝜔𝑛𝑡 + 𝜙)                                       (4) 

where 𝐴 is the amplitude of the displacement, 𝜔𝑛 is 

the angular natural frequency which determines the 

interval in time during which the function repeats 

itself, and 𝜙 is the phase which determines the initial 

value of the sine function.  It is standard to measure 

𝑡 in seconds (s), the phase in radians (rad) and the 

frequency in radians per seconds (rad/s).  The 

angular frequency 𝜔𝑛 is determined by the physical 

properties of the of the mass and stiffness of the 

spring (𝑚 and 𝑘), 

𝜔𝑛
2 =

𝑘

𝑚
     𝑜𝑟     𝜔𝑛 = √

𝑘

𝑚
                                   (5) 

and the amplitude and phase are determined by the 

initial positions and velocities, as well as the systems 

natural frequency measures  in hertz (Hz) or cycles 

per seconds (cycles/s) denoted by 

𝑓𝑛 =
𝜔𝑛

2𝜋
                                                                  (6) 

By differentiating the equation of motion yields 

the velocity given by 

�̇�(𝑡) = 𝜔𝑛𝐴 cos(𝜔𝑛𝑡 + 𝜙)                                   (7) 

and the acceleration is given by 

�̈�(𝑡) = −𝜔𝑛
2𝐴 sin(𝜔𝑛𝑡 + 𝜙)                              (8) 

The two constants of integration that need to be 

evaluated are A and 𝜙 which are determined by the 

initial state of motion of the spring and mass system.  

When the mass is displaced a distance 𝑥0 at time 𝑡0 

(t = 0) the force 𝑘𝑥0 in the spring will result in 

motion.  Also, if the mass is given an initial velocity 

𝑣0 at time 𝑡0, motion will result because of the 

induced change in momentum.  By substituting the 

initial conditions into the equations of motion yields 

to 

𝑥0 = 𝑥(0) = 𝐴 sin(𝜔𝑛0 + 𝜙) = 𝐴 sin (𝜙)         (9) 

𝑣0 = �̇�(0) = 𝜔𝑛𝐴 cos(𝜔𝑛0 + 𝜙) = 𝜔𝑛𝐴 cos (𝜙)   

(10) 

Solving these two equations simultaneously for 

the two constants of integration, 𝐴 and 𝜙 yields to 

𝐴 =
√𝜔𝑛

2𝑥0
2+𝑣0

2

𝜔𝑛
                                                 (11) 

𝜙 = 𝑡𝑎𝑛−1 (
𝜔𝑛𝑥0

𝑣0
)                                               (12) 

Substituting this constants into the equation of 

motion gives the solution of motion for the spring 

and mass system which is given by 

𝑥(𝑡) =
√𝜔𝑛

2𝑥0
2+𝑣0

2

𝜔𝑛
 sin (𝜔𝑛𝑡 + 𝑡𝑎𝑛−1 (

𝜔𝑛𝑥0

𝑣0
))  

(13) 

This solution is called the free response of the 

system because no force external to the system is 

applied after t = 0.  The motion of the spring-mass 

system is called simple harmonic motion or 

oscillatory motion. [2] 

VISCOUS DAMPING 

The response of the spring and mass models 

predict that the system will oscillate indefinitely.  

However, everyday observations indicate that freely 

oscillating systems eventually die out and reduce to 

zero motion.  These observations suggest that the 

spring-and-mass model and the corresponding 

mathematical equations need to be modified to 



 

 

account for this decaying motion.  The theory of 

differential equations suggest that adding a term to 

the equation of the form 𝑐�̇�(𝑡), where c is a constant, 

will result in a solution 𝑥(𝑡) that dies out.  Physical 

observations agree fairly well with this model and 

are used successfully to model de damping, or decay, 

in a variety of mechanical systems.  This type of 

damping is called viscous damping. 

While the spring forms a physical model for 

storing potential energy and hence causing vibration, 

the dashpot, or damper, form the physical model for 

dissipating energy and thus damping the response of 

the mechanical system.  The force is proportional to 

the velocity of the piston in the direction opposite 

that of the piston motion.  The damping force is 

given by  

𝑓𝑐 = 𝑐�̇�(𝑡)                                                           (14) 

where, is a constant of proportionality to the oil 

viscosity is called the damping coefficient with units 

of force per velocity. 

Using a simple force balance on the mass in the 

x-direction the equation of motion 𝑥(𝑡) becomes 

𝑚�̈� = −𝑓𝑐 − 𝑓𝑘                                                  (15) 

𝑚�̈�(𝑡) + 𝑐�̇�(𝑡)  + 𝑘𝑥(𝑡) = 0                             (16) 

In order to solve this differential equation of 

second order, let’s assume a particular solution 

of 𝑥(𝑡) = 𝑎𝜆𝑒𝜆𝑡.  Substituting it into the equation of 

motion yields to 

(𝑚𝜆2 + 𝑐𝜆 + 𝑘)𝑎𝑒𝜆𝑡 = 0                                  (17) 

since 𝑎𝑒𝜆𝑡 ≠ 0, then 

𝑚𝜆2 + 𝑐𝜆 + 𝑘 = 0                                             (18) 

Using the quadratic equation to solve this 

second order differential equation yields to two 

solutions 

𝜆1,2 = −
𝑐

2𝑚
±

1

2𝑚
√𝑐2 − 4𝑘𝑚                            (19) 

Examination of this expression indicates that the 

root 𝜆 will be real or complex depending on the value 

of the discriminant, √𝑐2 − 4𝑘𝑚.  As long as 𝑚, 𝑐, 

and 𝑘 are positive real numbers, 𝜆1 and 𝜆2will be 

distinct negative real numbers if  𝑐2 − 4𝑘𝑚 > 0.  

On the other hand if the discriminant is negative, the 

roots will be a complex conjugate pair with negative 

real parts.  If the discriminant is zero, the two roots 

𝜆1 and 𝜆2 are equal negative real numbers.  For these 

three cases, it is both convenient and useful to define 

the critical damping coefficient, 𝑐𝑐𝑟, by 

 𝑐𝑐𝑟 = 2𝑚𝜔𝑛 = 2√𝑘𝑚                                       (20) 

The non-dimensional number 𝜁 called the 

damping ratio is defined by 

𝜁 =
𝑐

 𝑐𝑐𝑟
=

𝑐

2𝑚𝜔𝑛
=

𝑐

2√𝑘𝑚
                                      (21) 

It is now clear that the damping ratio 𝜁 

determines whether the roots are complex or real.  

This in turn determines the nature of the response of 

the damped single-degree-of-freedom system. 

Under Damped Motion 

In the case of damping ratio 𝜁 less than 1 (0 < 𝜁 

< 1) and the discriminant √𝑐2 − 4𝑘𝑚 is negative, the 

results in a complex conjugate pair of roots that 

become 

𝜆1 = −𝜁𝜔𝑛 − 𝜔𝑛√1 − 𝜁2 𝑗                                (22) 

𝜆2 = −𝜁𝜔𝑛 + 𝜔𝑛√1 − 𝜁2 𝑗                                (23) 

where 𝑗 = √−1.  Following the same argument as 

that was made for the un-damped response equation, 

the solution is then in the form of 

𝑥(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 (𝑎1 𝑒𝑗√1−𝜁2𝜔𝑛𝑡 + 𝑎2 𝑒−𝑗√1−𝜁2𝜔𝑛𝑡) 

(24) 

where 𝑎1 and 𝑎2 are arbitrary complex values of 

integrations determined by the initial conditions.  

Using Euler’s relations this equation can be 

simplified to 

𝑥(𝑡) = 𝐴 𝑒−𝜁𝜔𝑛𝑡  sin (𝜔𝑑𝑡 + 𝜙)                         (25) 

where 𝐴 and 𝜙 are constants of integration and 𝜔𝑑 is 

called the damped natural frequency which is given 

by 

𝜔𝑑 = 𝜔𝑛√1 − 𝜁2                                                (26) 

in units of rad/s.  Differentiating 𝑥(𝑡) yields to 



 

 

�̇�(𝑡) = −𝜁𝜔𝑛𝐴 𝑒−𝜁𝜔𝑛𝑡 sin(𝜔𝑑𝑡 + 𝜙) +

                  𝜔𝑑𝐴 𝑒−𝜁𝜔𝑛𝑡 cos(𝜔𝑑𝑡 + 𝜙)                 (27) 

and evaluation it with initial conditions of t = 0 and 

𝐴 =
𝑥0

sin(𝜙)
 , 

�̇�(0) = 𝑣0 = −𝜁𝜔𝑛𝑥0 + 𝑥0𝜔𝑑cot (𝜙)               (28) 

Solving for 𝜙 yields to 𝜙, 

𝑡𝑎𝑛 (𝜙) =
𝑥0𝜔𝑑

𝑣0+𝜁𝜔𝑛𝑥0
                                            (29)  

with this value of 𝜙, the sine becomes  

𝑠𝑖𝑛 (𝜙) =
𝑥0𝜔𝑑

√(𝑣0+𝜁𝜔𝑛𝑥0)2+(𝑥0𝜔𝑑)2
                          (30) 

thus the values of A and 𝜙 are determined by  

𝐴 = √
(𝑣0+𝜁𝜔𝑛𝑥0)2+(𝑥0𝜔𝑑)2

𝜔𝑑
2                                    (31) 

𝜙 = tan −1 (
𝑥0𝜔𝑑

𝑣0+𝜁𝜔𝑛𝑥0
)                                        (32) 

where 𝑥0 and 𝑣0 are the initial displacement and 

velocity respectively, and the damping ratio 𝜁 

determines the rate of decay. 

  

Figure 1 

Response of an Underdamped System [2] 

PRINCIPLE OF PIEZOELECTRIC EFFECT 

FOR ENERGY HARVESTING 

Harvesting of mechanical energy is to convert it 

into electrical energy, which requires a mechanical 

system that couples motion or vibration to a 

transduction mechanism. The mechanical system 

should be designed to be able to maximize the 

coupling between the mechanical energy sources 

and the transduction mechanism, depending on the 

characteristics of the environmental motions. For 

example, energy due to vibration can be converted 

by using inertial generators, with the mechanical 

component attached to an inertial frame that acts as 

a fixed reference. The inertial frame transmits the 

vibrations to a suspended inertial mass to produce a 

relative displacement between them. System like this 

usually has a resonant frequency, which can be 

designed to match the characteristic frequency of the 

environmental motions. 

These inertial-based generators can be well 

described as second-order spring-mass systems. For 

a system with a seismic mass of m on a spring with 

a stiffness of k, its energy loss, consisting of parasitic 

loss, cp and electric energy generated by the 

transduction mechanism, ce, can be represented by 

damping coefficient, ct . The system is excited by an 

external sinusoidal vibration, y(t) = Ysin(xt). At 

resonant frequency, there is a net displacement, z(t), 

between the mass and the frame. If the mass of the 

vibration source is greatly larger than that of the 

seismic mass, the latter can be ignored. If the 

external excitation is harmonic, the differential 

equation of the motion is given by equation (3). 

Energy conversion can be maximized when the 

excitation frequency matches the angular frequency 

of the system.  

When there is sufficient acceleration, increased 

damping effects will lead to a response with 

broadened bandwidth, so that the generator will be 

less sensitive to frequency. An excessive device 

amplitude can lead to nonlinear behavior of the 

generator, which will make it difficult in keeping the 

generator working at resonance frequency. For 

specific applications, both the frequency of the 

generator and the level of damping should be 

specifically designed to maximize the power output. 

The power generation can also be maximized by 

maximizing the mass of the mechanical structure. [3] 

Piezoelectric Energy Harvesting Devices 

Piezoelectric materials can produce electrical 

charges when they are subject to external mechanical 

loads. Figure 2 shows working principle of a piece 

of piezoelectric material. The magnitude and 

direction of the electrical current are determined by 

the magnitude and direction of the external 

mechanical stress/strain applied to the materials. 



 

 

There have been various modes of vibration that can 

be used to construct piezoelectric harvesting devices. 

 
Figure 2 

Schematic showing the Response of a Piece of Piezoelectric 

Ceramics to External Mechanical Stimulation [3] 

 
Figure 3 

Common Modes of Vibration [3] 

The common modes of vibration are 

summarized in Figure 3 [3]. With given modes of 

vibrations, there are different piezoelectric 

structures. Figure 4 [3] shows typical piezoelectric 

structures that can be found in open literature. 

Among the various piezoelectric structures for 

energy harvesters, the cantilevered beams with one 

or two piezoelectric ceramic thin sheets, which are 

named unimorph and bimorph Figure 4a, 

respectively, are the simplest ones. As discussed 

above, the harvester beam is positioned onto a 

vibrating host, where the dynamic strain induced in 

the piezoceramic layer(s) results in an alternating 

voltage output across their electrodes. Figure 5 

shows a schematic of a cantilever tested under base 

excitation. When a harmonic base motion is applied 

to the structure, an alternating voltage output is 

produced. Cantilevered piezoelectric energy 

harvesters can work in two modes: d33 mode and 

d31 mode, as shown in Figure 6. In d31 mode, a 

lateral force is applied in the direction perpendicular 

to the polarization direction. In this case, the bending 

beam has electrodes on its top and bottom surfaces, 

as in Figure 6a. In d33 mode, forces are applied in  

 
Figure 4 

Piezoelectric Structures: (a) Bimorph, (b) Multilayer, (c) 

Moonie, (d) Rainbow, (e) Cymbal and (f) S-morph [3] 

Although piezoelectric materials working in 

d31 mode normally have lower coupling coefficients 

than in d33 mode, d31 mode is more commonly 

used. This is because when a single-layer cantilever 

or a double-clamped beam bends, more lateral stress 

is produced than vertical stress, which makes it 

easier to couple in d31 mode. Similar principle can 

be applied to the harvesters with other structures. 

Beam structures are usually used for low stress 

levels, whereas at high stress levels, another type of 

device, ceramic–metal composites, is preferred. 

Ceramic–metal composites generally have a simple 

design with a metal faceplate, called shell or cap, 
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which couples to both the ceramic and the 

surrounding medium. 

 
Figure 5 

Schematic Cantilevered Piezoelectric Energy Harvester 

Tested under Base Excitation [3] 

The metal component transfers the incident 

stress to the ceramic or the displacement to the 

medium. Flextensional transducers are good 

examples of ceramic–metal composites.  

 

Figure 6 

Two Types of Piezoelectric Energy Harvesters a d31 Mode 

and b d33 Mode [3] 

To theoretically study the mechanics of 

piezoelectric energy harvesting and experimentally 

evaluate the performances of alternative current 

(AC) power generation, the devices are usually 

considered to be subject to a resistive load in the 

electrical domain. To use the electricity produced by 

a piezoelectric energy harvester, the alternating 

voltage output should be converted to a stable 

rectified voltage. This can be realized by using a 

rectifier bridge and a smoothing capacitor to form an 

AC–DC converter. The energy can be used to charge 

small batteries or stored in capacitors. To maximize 

the power transfer to the energy storage devices, it is 

also necessary to use a DC–DC converter to regulate 

the voltage outputs of the rectifier. These electrical 

circuit and power electronics are very important for 

practical applications of the energies harvested [3]. 

Electrical circuits or proposed power applications 

are beyond the scope of this project. 

CANTILEVER BEAM: DEFLECTION, 

NATURAL FREQUENCY AND STIFFNESS  

In engineering systems, it is often necessary to 

know the magnitude of beam deflections under 

various loading conditions. Often the maximum 

allowable beam deflection 𝑦𝐴 is defined in terms of 

span L of the beam [4]. For the case of a cantilever 

beam, Figure 7, with uniform cross section loaded at 

the tip with a load P, the deflection at the end is 

obtained by: 

𝑦𝐴 =
𝑃𝐿3

3𝐸𝐼
            (33) 

Where E, the Modulus of Elasticity and I is the 

moment of inertia. The formula for the natural 

frequency fn of a single-degree-of-freedom system 

is:  

𝑓𝑛 =
1

2𝜋
√

3𝐸𝐼

𝑚𝐿3            (34) 

Where m, is the mass of the tip load. Other 

important property of the system is the stiffness k at 

the end of the beam is:  

𝑘 =
𝑃

𝑦𝐴
=

3𝐸𝐼

𝐿3                               (35) 

The stiffness is the ratio of the load to the 

deflection. Notice that the stiffness is inversely 

proportional to L3; the beam’s stiffness decreases 

rapidly with length. [4]  

 
Figure 7 

Cantilever Beam AB with a Load P at its Free End [5] 

THE ENERGY HARVESTER 

The two main objectives of this project were to 

measure the vibration spectrum from a household 

conventional air conditioning unit and quantify the 

amount of energy produced by the vibration with a 

currently available piezoelectric sensor.   

The Measurement Specialties MiniSense 100 

Vibration Sensor is a low-cost cantilever-type 

vibration sensor loaded by a mass to offer high 

sensitivity at low frequencies. [6]   



 

 

 
Figure 8 

 MiniSense 100 Vibration Sensor [6] 

The pins are designed for easy installation and 

are solderable. Horizontal and vertical mounting 

options are offered as well as a reduced height 

version. The active sensor area is shielded for 

improved RFI/EMI rejection. Rugged, flexible 

PVDF sensing element withstands high shock 

overload. Sensor has excellent linearity and dynamic 

range, and may be used for detecting either 

continuous vibration or impacts. The mass may be 

modified to obtain alternative frequency response 

and sensitivity selection. 

The MiniSense 100 acts as a cantilever-beam 

accelerometer. When the beam is mounted 

horizontally, acceleration in the vertical plane 

creates bending in the beam, due to the inertia of the 

mass at the tip of the beam. Strain in the beam creates 

a piezoelectric response, which may be detected as a 

charge or voltage output across the electrodes of the 

sensor.  

The sensor may be used to detect either 

continuous or impulsive vibration or impacts. For 

excitation frequencies below the resonant frequency 

of the sensor, 75Hertz (Hz), the device produces a 

linear output governed by the “baseline” sensitivity. 

The sensitivity at resonance is significantly higher. 

Impacts containing high-frequency components will 

excite the resonance frequency which is the response 

of the MiniSense 100 to a single half-sine impulse at 

100Hz, of amplitude 0.9 g. [6]  

Mechanical Properties 

From the energy harvesting theory, the power 

output by the harvester is a maximum when the 

frequency of the excited system reaches resonance. 

The MiniSense 100 specifications states that the 

resonance frequency of the system is reached at 

75Hz. In order to obtain viable results which lead to 

a good analysis and optimization of the system, 

certain properties like the modulus of elasticity E is 

needed. Since this is a property not provided by 

manufacturer, firstly we have to obtain the modulus 

of elasticity. To do this, the values of vertical 

displacement were obtained experimentally for 

different values of the concentrated load P applied at 

the free end of the beam.  

 
Figure 9 

 Harvester Beam Dimensions [6] 

The loads to compute the displacement are: 

(2.94, 5.14, 7.34, 9.53, 11.73 and 13.93) x10-3N.  

Table 1 

 Experimental Beam Displacement 

 

P (N) 

Experimental 

YA(m) 

    2.94E-03 0.00002 

5.14E-03 0.00010 

7.34E-03 0.00032 

9.53E-03 0.00068 

1.17E-02 0.00116 

1.39E-02 0.00176 

Inserting the experimental displacement results 

into (33) and solve for E. To obtain a constant value 

the Root Mean Square of the vector matrix from the 

previous results gives, E = 2.21GPa. From (35), the 

stiffness k is: 64.83N/m2. Next the natural 

frequencies when the beam is subjected to a load at 

the end of the beam can be obtained from (34), 

experimental natural frequencies in Table 2 with 

respect to the load applied to the system.  The 

experimental data validates the data from the 



 

 

manufacturer by limiting the harvester to a 

resonance frequency of 75Hz. 

Table 2 

 Natural Frequency with Respect to the Load P Applied to 

the Beam  

 

P (N) 

Experimental 

fn (Hz) 

    2.94E-03 74.0 

5.14E-03 56.0 

7.34E-03 49.6 

9.53E-03 41.1 

1.17E-02 37.1 

1.39E-02 34.0 

VIBRATION SPECTRUM AND RESULTS 

The source of the input vibrational signal comes 

from the fan component of a household air 

conditioning unit. The fan model as shown in Figure 

10 operates from 1690/1900 rpm at Hi (Cool/Heat).  

 
Figure 10 

FAN Unit Model with Harvester and Measurement 

Equipment on Top 

The vibration spectrum from the source is 

obtained from an accelerometer hardware/software. 

The accelerometer was located on top of the fan 

metal casing axially aligned with the center of the 

rotating fan shaft. Figure 11a, shows the data 

obtained by the accelerometer and plotted using 

MATLAB Signal Processing Tool (SPTOOL). 

 

(a) 

 

(b) 

 

(c) 

Figure 11 

FAN Vibrational Signal Spectrum (a) and Operating 

Frequency (b) from FFT Analysis (c) Welch Power Spectral 

Density Analysis 

The frequency of the fan from Matlab Sptool, 

using the Fast Fourier Transformation (FFT) and 

Welch spectral density estimate analysis is 31.25Hz 

and 31.05Hz respectively with a magnitude of 

0.07m/s2, Figure 11b, c, or translated into rotational 

speed 1875rpm, which is close to the fan equipment, 

HI (Heat) operation from manufacturer 

specifications.  



 

 

The Energy Harvester and the Data Acquisition 

Setup 

A single energy harvester was tested with the 

objective to obtain the frequency at which the 

cantilevered beam system operates when subjected 

to a vibrational source as received from the 

manufacturer. The MiniSense 100, Figure 8, is 

equipped with a 0.3g mass located at the end tip. The 

harvester was installed over a rigid base and wired at 

the two connecting poles (+,-), Figure 12 and 

connected to a data logging multi-meter, Figure 13.  

 

Figure 12 

Harvester Configuration 

The data was measured while the fan was 

operating for a lapse of five minutes. FFT analysis 

of the data shows that the fan is exciting the harvester 

at 15.19Hz.   

 

Figure 13 

Testing Setup 

Harvester #1, with a 0.3g mass at the end tip is 

excited and vibrates at 15.19Hz. Figure 14. Shows 

the FFT power spectrum estimates for the test.  

 

Figure 14 

Harvester #1 Frequency of Vibration from FFT Analysis 

MODEL OPTIMIZATION 

By modifying the harvester structure we can 

increased the frequency at which the harvester is 

excited. Among all the possible modification to the 

system, there are two ways which can lead to a good 

optimization of the harvester. One is to increase or 

decrease the length of the beam and two by tuning 

the tip mass. The later was selected since the 

integrity of the piezoelectric coupling with the 

protective shield and the mechanical properties of 

the system were too maintained intact. A second 

harvester is equipped with an extra 0.224g mass and 

a third with 0.672g. Total mass acting on the 

harvesters beam end tip is: (0.3g, 0.524g and 

0.972g). The three harvesters were tested for five 

minutes and the frequency of excitation obtained. 

Figure 15, shows the FFT spectrum estimate for 

harvester #2.   

 

Figure 15 

Harvester #2 Frequency of Vibration from FFT Analysis  

The results from the harvester #2 test shows that 

by modifying the end tip mass increases the 

frequency response of the system. The third 

harvester was tested with similar behavior on the 



 

 

results, see Figure (16). The response of the 

harvester is that the excitation frequency is again 

increased.  

 

Figure 16 

Harvester #6 Frequency of Vibration from FFT Analysis 

Figure 17, shows a comparison of the natural 

frequency of the harvesters, the frequency of the 

operating fan and the frequency of the excited 

harvesters in Hz. From the graph it can be observed 

that the increased in the mass at the end of the beam 

had the effect to increase the frequency of excitation 

of the harvester. 

 
Figure 17 

Harvester #6 Frequency of Vibration from FFT Analysis 

By inspecting the excitation frequencies of the 

three harvester it is expected that the system with the 

frequency closest to the fan frequency, (31.25Hz), 

will produced the highest power output. To obtain 

the power produced by the harvester, the magnitude 

of the signal needs to be calculated from the 

spectrum estimate results. The FFT spectrum not 

only estimates the frequency response of the 

vibration signal, but also the magnitude of the 

vibration in Decibels (dB). The time-domain 

magnitude of the data in in volts (V). Equation (35) 

converts from the frequency-domain magnitude into 

the time-domain magnitude. The magnitude in (V) 

the three harvesters are: (3.08x10-4, 5.88x10-4, and 

3.27x10-4).  

𝑚𝑎𝑔(𝑣𝑜𝑙𝑡𝑠) = 20 ∗ 𝐿𝑜𝑔10(𝑚𝑎𝑔(𝑑𝐵))     (35) 

One of the most common use of Fast Fourier 

transform is to find the frequency components of a 

signal buried in the noisy time domain. It is from the 

FFT analysis that a single dominant signal is 

extracted from the original vibrational spectrum, 

(36) represents the dominant signal of the excitation 

frequency from the air conditioning fan, and (37), 

(38) and (39) the response of the energy harvesters 

to that of the excitation frequency in a simple 

sinusoidal wave form. From the resulting sinusoidal 

wave signals the point of interest is the magnitude of 

the signal, which allows to obtained the highest 

power output. Frequency at this point is secondary 

since circuit optimization is beyond the project’s 

scope. Considering the sinusoidal wave form, Figure 

18, represents the plot of the amplitude A and 

frequency ωn of the inputted signal acting on the 

energy harvesters and Figure 19 the response of the 

harvesters to the inputted signal. Substituting 

amplitudes and frequencies into (4) we obtained the 

displacement functions obtained from the FFT 

spectrum estimate for a phase shift set to 0. 

𝑦(𝑡) = 0.07 sin (31.25𝑡)                                  (36) 

𝑦(𝑡) = 3.08𝑥10−4 sin (15.19𝑡)                        (37) 

𝑦(𝑡) = 5.88𝑥10−4 sin (18.75𝑡)                        (38) 

𝑦(𝑡) = 3.27𝑥10−4 sin (25.13𝑡)                        (39) 

 

Figure 18 

Sine Wave Form of the A/C Fan Signal Acting on the Energy 

Harvesters  



 

 

(a) 

(b) 

(c) 

Figure 19 

Energy Harvester’s Response to the Vibrational Spectrum 

Produced by the a/c fan. Energy Harvester 1(a), 2(b) and 

3(c) 

Power Generated by the Harvester 

The system configuration is set as an open 

circuit. The voltage obtained from the vibrating 

harvester is measured, but in order to obtain the 

power that can be harvest with the system a current 

flow is needed. The harvesters acting as a voltage 

source, were connected to a 100Ω resistor, Figure 20, 

to obtain the current flowing thru the electrical 

component and therefore calculate the power that 

can be generated from the vibration of the harvesting 

system.   

When the current is flowing thru the resistor, 

electrical damping acts directly to the systems by 

decreasing the excitation frequency. When the 

system is connected to the resistor the excitation 

frequency decreases substantially. Harvester #1 

excitation frequency drops from 15.18Hz to 0.25Hz, 

Harvester #2 from 18.75Hz to 0.1875Hz and 

Harvester #3 from 25.13 to 0.096Hz. 

 

Figure 20 

Harvester Acting as a Voltage Source to Measure the 

Current Flowing thru the Resistor 

The drop in frequency shows two main facts, 1) 

Electrical damping is acting on the system and 2) 

Power is been generated across the circuit. The 

current in Amps (A) flowing thru the resistor from 

the three harvesters is: (2.95x10-6, 2.07x10-5, and 

7.63x10-5). From basic electrical principles Power 

(watts, W) is equal to the voltage (Volts, V) times 

the current (Amps, A). The energy harvesters 

generates a power output of: (9.07x10-10, 1.88x10-8 

and 2.49x10-8). Figure 21, shows a comparison of the 

power generated from the three harvesters. The 

results shows that when optimizing the system by 

tuning the mass at the end tip, the power generated 

by the system is increased. The small amount 

generated by the system may not be sufficiently 

enough to energize some of the daily electronic 



 

 

devices that we use, but the results prove that power 

is generated and ultimately increased.   

 

Figure 21 

Final Power Generated Comparison  

CONCLUSION 

By placing a mass at the end tip of the 

cantilevered energy harvester, not only the 

frequency of the harvesters is excited to a higher 

frequency, but the increase in the ability of the 

piezoelectric material to generate 1,345% from 

energy harvester #2 and 2,745% for energy harvester 

#3, more power output compared to the original 

energy harvester generation. The amount of power 

generated by the piezoelectric harvesters stills 

significantly small, if compared with today’s power 

demand, but the reduction in size and power 

consumption of micro electro mechanical systems 

gives this source of energy a fertile ground for 

extensive research.  
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