
Resuminer – A Résumé Recommender System for Job Seekers using Cluster Analysis

Orlando Ferrer Hernández

Master of Engineering in Computer Engineering

Dr. Jeffrey Duffany

Electrical & Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract Résumés or curriculum vitae are an

essential requirement for job seekers in any industry

and are usually the first interactions with third

parties that are actively hiring. For a single person,

there is an infinite combination of résumés possible.

They can vary not only in style, but in the content and

the overall presentation. Resuminer is a system for

comparing and tracking résumés and their

performance against jobseekers. By tracking how a

third party interact online with a résumé, and by

gathering a large quantity of résumés, the system

can analyze new résumés as input and make

recommendations as to what elements can improve

the chances of getting a callback. The system will

assign “interaction points” with different values to

the various elements in a résumé.

Key Terms Bag of Words, Clustering,

Corpus, Natural Language Processing (NLP).

INTRODUCTION

In order to measure what are the qualities of a

desirable résumé, we need to be able to collect data.

In order to collect the desired data on what is usually

a physical or electronical document we cannot track,

we need to be able to move all documents to the

Web. In every résumé created, physical or

electronic, there will be a link to an electronic

version of the résumé using a short URL and

instructions inviting the reader to visit said URL for

additional information and examples of work. Every

different document will have a unique URL.

Documents can also incorporate a QR code for quick

access. By logging all visits each URL, we can

identify how many times any version of a specific

document is been looked at, and create a scoring

system that will track all interactions. All third party

interactions with a résumé will be referred to as

“interactions”, and the scoring system will be

referred to as “interaction points”. Third party

interactions with the résumé will be translated into

“interaction points”.

Actions that will increase the “interaction

points” of a particular résumé are:

 Visiting a résumé via short URL

 Visiting a résumé via QR code scan

 Clicking on links in the résumé website

 Receiving a callback and/or interview

Callback data will be entered manually into the

system.

BACKGROUND

Machine learning can be described as a “Field

of study that gives computers the ability to learn

without being explicitly programmed” [1]. It is

currently at the forefront of many recent and

upcoming new technologies. Data can be considered

the new currency of technology [2], and Big Data

holds the answer to many interesting questions,

some of them yet unknown. Machine learning is not

a new topic, but with growing processing power and

storage capabilities of modern computing, new

applications are being found. It can be used from a

simple classification, to complex computer vision

used in self driving cars. At its core, machine

learning consists of a set of inputs that generate a set

of outputs using a model [3]. Once we have a model,

we can make predictions. The model can evolve as

more data is gathered.

Natural language processing is a way for a

computer to analyze, understand and manipulate text

to do useful things. At its core it extracts semantic

information from human language, and can be used

for simple tasks such as word frequency analysis, but

can be used for complex tasks such as sentiment

analysis, language translation, automatic

summarization, and many others. In this work, some

simple natural language processing will be used.

DATABASE SCHEMA

The back end of the online web application will

need a database to save and display data. Below is

the database schema.

Table 1

Page_visits

Field Description

Resume_id Unique id

Incoming_URL Referrer URL

timestamp Date and time

Table 2

Interactions

Field Description

Resume_id Primary id

timestamp Date and

time

Action_performed Clicks

Table 3

Interaction_points_value

Field Description

Visit_resume Points for

visiting

Scan_QR Points for

scanning QR

Click on link Points for

clicking

Click on Github Points for

clicking

Points Points

Table 4

Job_requirements

Field Description

Resume_id Unique id

job_title Name of the

position

Company_name Company

name

Position_description Description

Table 5

Resume

Field Description

Resume_id Unique id

Short_url Short URL

for resume

Resume_text Resume text

Company_name Company

name

Job_title Job title

ALGORITHMS & MODELS

The first level of text analysis will be a simple

“bag of words” with frequency analysis. The “bag of

words” is a model used in natural language

processing where a document is represented as a bag

(multiset) of unordered words, disregarding the

grammatical structure but keeping duplicate words.

After converting a document into this “bag of

words” representation, it is possible to calculate

various characteristics of the text, the most common

being term frequency- the number of times each

word appears in a document. After this is done, there

are some techniques to normalize the text. Before

normalization, we can remove some of the most

common words such as prepositions and articles

(the, on, at, in, which, on, and) and any other words

that will not be relevant for the analysis- these are

commonly referred to as stop words. Each individual

file is called a “document”, and the collection of all

documents is called the “corpus”.

Figure 1

Bag of Words Representation

This information is saved internally in two

separate matrixes, one for the terms and one for the

term frequency.

Figure 2

Runtime Terms and Term Frequency

After removing stop words, the next step

towards normalization calculating the term

frequency (tf). As the name suggests, the frequency

of every word is calculated in every individual

document. This information is relevant, but not

enough when we have multiple document we want

to compare. In order to analyze multiple documents,

the inverse document frequency (idf) will be needed

as well. The inverse document frequency will

measure how important a term is. When computing

the term frequency, all the term are considered

equally important. The inverse document frequency

searches for the terms through all the corpus, and

measures the relevance of the word though all the

documents. By calculating both of these, we can now

calculate the term frequency-inverse document

frequency (tf-idf), which is the product of both. This

is a numerical statistic that reflects the relevance of

a word to a document in a corpus. This value

increases proportionally to the number of times it

appears in a document, but is also offset by the

frequency of the word in the corpus. Mathematically

speaking, the term frequency tf (t, d) can be

represented as “(1)”

𝑡𝑓(𝑡, 𝑑) = 0.5 + 0.5
𝑓𝑡,𝑑

max{𝑓𝑡′,𝑑∶𝑡′∈𝑑}
 (1)

The inverse document frequency can be

represented as “(2)”.

𝑖𝑑𝑓(𝑡, 𝐷) = log
𝑁

|{𝑑∈𝐷∶𝑡 ∈𝑑}|
 (2)

The second level of analysis will involve

clustering. After we have multiple résumés that have

gone through the text analysis, and have been viewed

online multiple times, we can do a k-means cluster

analysis. The top key terms are selected for each

cluster.

K-means clustering aims to partition n

observations into k clusters in which each

observation belongs to the cluster with the nearest

mean [4]. The way this is computed is by generating

k initial means randomly. k clusters are created by

associating observations to the nearest mean. The

centroid of each of the k clusters now becomes the

new mean. These steps are repeated until

convergence. It is now possible to generate a cosine

similarity matrix using the tf-idf matrix, then

generate a distance matrix (1 – similarity matrix).

After this we generate a plot. In the plot we should

see the clusters of the different documents.

Figure 3

k Means Step 1- Random Generated k (shown in color)

Figure 4

k Means Step 2 - Clusters Created by Associating with

Nearest Mean

Figure 5

k Means Step 3 - Centroids become New Mean

Figure 6

k Means Step 4 - Previous Steps Repeated until Convergence

The complete data analysis process, from

reading the data to obtaining the cluster data can be

summarized with figure 7. It can be summarized in

six steps: reading the résumé data from text files,

tokenizing each document into individual words,

generating the term frequency-inverse document

frequency (tf-idf) matrix, generating the clusters

(using k-means), calculating the similarity, and

plotting the results. These same steps can also be

used when analyzing document style (such as fonts,

font size, font style, document format). These data

points can be entered into the system, to get a similar

analysis about which document styling options make

a document stand out. By comparing both of the

resulting plots, it is possible to find what keywords

attract more interest as well as which styling options

seem to be preferred.

Figure 7

Resuminer Process

By feeding an untested résumé (without any

“interaction points”) to this system, and running it

thought the same analysis, we’ll be able to determine

which cluster it is closest to and we can make an

educated prediction on how it will perform. We can

determine if this résumé is closer to the cluster with

the desirable scores, or with a low score. As the

dataset grows, the approximations to the correct

cluster will improve.

TOOLS

The data analysis will be done using scikit-

learn, a library for machine learning for Python. The

scikit-learn libraries are well documented and

available at http://scikit-learn.org. It is currently

used extensively in the data science community for

both academic research, as well as industry projects.

Scikit-learn provides a range of supervised and

unsupervised learning algorithms. In addition to

scikit-learn, Jupyter Notebook (previously known as

IPython) is being used as an interactive

programming environment and documentation

engine. It is available from http://jupyter.org. Jupyter

Notebook runs as a server-client application in the

web browser, it can be installed and executed locally

or in a remote machine. Any notebooks created in

this environment is easily portable to a different

machine, and the code that is being executed can be

documented.

Figure 8

Resuminer Running in Jupyter Notebook

Figure 9

Full Document Loaded in Jupyter Notebook

Figure 10

Performing tf-idf Analysis in Jupyter Notebook

USER INTERFACE

Users will be able to interface with the system

through a regular web browser. The interface will be

simple, it will display the database entries and will

allow entering new data.

Figure 11

Display of the Database Entries in the Browser

CONCLUSION

All else being equal, there are infinite ways in

which the same information can be conveyed. There

are some qualities or styles of writing that make a

document (a résumé, for the purpose of this work)

stand out from the others. By tracking the interest in

each unique document and applying data science

techniques it is possible to have an understanding of

which characteristics make a résumé stand out over

other ones. Impact keywords could be a factor, but

there are many others waiting to be discovered by

applying other algorithms and gathering more

training data.

Below is the result of plotting and analyzing all

the points with the current test data in the Resuminer

engine.

Figure 12

Resulting Clusters

FUTURE WORK

In its current state, only the backend engine has

been implemented, so it is not easy to create new

data, it needs to be loaded manually. In order to be

able to easily add new résumés and track their

performance, a web based user interfaced needs to

be developed. It will interface with the existing

database, and will allow for a simpler data input

process. It will need to interface with the current

Python backend to process the data. Another feature

to be added is to not only analyze the text in résumés,

but the styling information as well- such as font, font

size, font style, and any others styling properties.

Analyzing the style data in conjunction with the text,

may yield interesting results as to which styles of

résumés grab the attention of recruiters. It is also

possible that the current implemented algorithm is

not the most efficient one, so other algorithms and

data processing techniques can be explored. As more

data is collected, there will be more training data

available to use and test the predictions made by the

algorithm.

REFERENCES

[1] P. Tan, M. Steinbach and V. Kumar, Introduction to data

mining, Boston: Pearson Addison Wesley, 2005.

[2] W. Eggers, R. Hamill and A. Ali, "Data as the new

currency", Deloitte Review, no. 13, 2013, pp. 19-23.

[3] M. Fierro, "A Gentle Introduction to the Basics of Machine

Learning", SciBlog, 2016.

[4] I. Witten, E. Frank and M. Hall, Data mining. Burlington,

MA: Morgan Kaufmann, 2011.

