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Abstract  Résumés or curriculum vitae are an 

essential requirement for job seekers in any industry 

and are usually the first interactions with third 

parties that are actively hiring. For a single person, 

there is an infinite combination of résumés possible. 

They can vary not only in style, but in the content and 

the overall presentation. Resuminer is a system for 

comparing and tracking résumés and their 

performance against jobseekers. By tracking how a 

third party interact online with a résumé, and by 

gathering a large quantity of résumés, the system 

can analyze new résumés as input and make 

recommendations as to what elements can improve 

the chances of getting a callback. The system will 

assign “interaction points” with different values to 

the various elements in a résumé.  

Key Terms  Bag of Words, Clustering, 

Corpus, Natural Language Processing (NLP).  

INTRODUCTION 

In order to measure what are the qualities of a 

desirable résumé, we need to be able to collect data.  

In order to collect the desired data on what is usually 

a physical or electronical document we cannot track, 

we need to be able to move all documents to the 

Web. In every résumé created, physical or 

electronic, there will be a link to an electronic 

version of the résumé using a short URL and 

instructions inviting the reader to visit said URL for 

additional information and examples of work. Every 

different document will have a unique URL. 

Documents can also incorporate a QR code for quick 

access. By logging all visits each URL, we can 

identify how many times any version of a specific 

document is been looked at, and create a scoring 

system that will track all interactions. All third party 

interactions with a résumé will be referred to as 

“interactions”, and the scoring system will be 

referred to as “interaction points”. Third party 

interactions with the résumé will be translated into 

“interaction points”.  

Actions that will increase the “interaction 

points” of a particular résumé are:  

 Visiting a résumé via short URL 

 Visiting a résumé via QR code scan 

 Clicking on links in the résumé website 

 Receiving a callback and/or interview 

Callback data will be entered manually into the 

system.  

BACKGROUND 

Machine learning can be described as a “Field 

of study that gives computers the ability to learn 

without being explicitly programmed” [1]. It is 

currently at the forefront of many recent and 

upcoming new technologies. Data can be considered 

the new currency of technology [2], and Big Data 

holds the answer to many interesting questions, 

some of them yet unknown. Machine learning is not 

a new topic, but with growing processing power and 

storage capabilities of modern computing, new 

applications are being found. It can be used from a 

simple classification, to complex computer vision 

used in self driving cars. At its core, machine 

learning consists of a set of inputs that generate a set 

of outputs using a model [3]. Once we have a model, 

we can make predictions. The model can evolve as 

more data is gathered. 

Natural language processing is a way for a 

computer to analyze, understand and manipulate text 

to do useful things. At its core it extracts semantic 

information from human language, and can be used 

for simple tasks such as word frequency analysis, but 

can be used for complex tasks such as sentiment 

analysis, language translation, automatic 

summarization, and many others. In this work, some 

simple natural language processing will be used.    



DATABASE SCHEMA 

The back end of the online web application will 

need a database to save and display data. Below is 

the database schema. 

Table 1 

Page_visits 

Field Description 

Resume_id Unique id 

Incoming_URL Referrer URL 

timestamp Date and time 

Table 2 

Interactions 

Field Description 

Resume_id Primary id 

timestamp Date and 

time 

Action_performed Clicks 

Table 3 

Interaction_points_value 

Field Description 

Visit_resume Points for 

visiting 

Scan_QR Points for 

scanning QR 

Click on link Points for 

clicking 

Click on Github Points for 

clicking 

Points Points 

Table 4 

Job_requirements 

Field Description 

Resume_id Unique id 

job_title Name of the 

position 

Company_name Company 

name 

Position_description Description 

Table 5 

Resume 

Field Description 

Resume_id Unique id 

Short_url Short URL 

for resume 

Resume_text Resume text 

Company_name Company 

name 

Job_title Job title 

ALGORITHMS & MODELS 

The first level of text analysis will be a simple 

“bag of words” with frequency analysis. The “bag of 

words” is a model used in natural language 

processing where a document is represented as a bag 

(multiset) of unordered words, disregarding the 

grammatical structure but keeping duplicate words. 

After converting a document into this “bag of 

words” representation, it is possible to calculate 

various characteristics of the text, the most common 

being term frequency- the number of times each 

word appears in a document. After this is done, there 

are some techniques to normalize the text. Before 

normalization, we can remove some of the most 

common words such as prepositions and articles 

(the, on, at, in, which, on, and) and any other words 

that will not be relevant for the analysis- these are 

commonly referred to as stop words. Each individual 

file is called a “document”, and the collection of all 

documents is called the “corpus”.  

 
Figure 1 

Bag of Words Representation 

This information is saved internally in two 

separate matrixes, one for the terms and one for the 

term frequency.  



 
Figure 2 

Runtime Terms and Term Frequency 

After removing stop words, the next step 

towards normalization calculating the term 

frequency (tf). As the name suggests, the frequency 

of every word is calculated in every individual 

document. This information is relevant, but not 

enough when we have multiple document we want 

to compare. In order to analyze multiple documents, 

the inverse document frequency (idf) will be needed 

as well. The inverse document frequency will 

measure how important a term is. When computing 

the term frequency, all the term are considered 

equally important. The inverse document frequency 

searches for the terms through all the corpus, and 

measures the relevance of the word though all the 

documents. By calculating both of these, we can now 

calculate the term frequency-inverse document 

frequency (tf-idf), which is the product of both. This 

is a numerical statistic that reflects the relevance of 

a word to a document in a corpus. This value 

increases proportionally to the number of times it 

appears in a document, but is also offset by the 

frequency of the word in the corpus. Mathematically 

speaking, the term frequency tf (t, d) can be 

represented as “(1)”  

𝑡𝑓(𝑡, 𝑑) =  0.5 + 0.5 
𝑓𝑡,𝑑

max{𝑓𝑡′,𝑑∶𝑡′∈𝑑}  
      (1) 

The inverse document frequency can be 

represented as “(2)”.  

𝑖𝑑𝑓(𝑡, 𝐷) = log
𝑁

|{𝑑∈𝐷∶𝑡 ∈𝑑}|
        (2) 

The second level of analysis will involve 

clustering. After we have multiple résumés that have 

gone through the text analysis, and have been viewed 

online multiple times, we can do a k-means cluster 

analysis. The top key terms are selected for each 

cluster.  

K-means clustering aims to partition n 

observations into k clusters in which each 

observation belongs to the cluster with the nearest 

mean [4]. The way this is computed is by generating 

k initial means randomly. k clusters are created by 

associating observations to the nearest mean. The 

centroid of each of the k clusters now becomes the 

new mean. These steps are repeated until 

convergence. It is now possible to generate a cosine 

similarity matrix using the tf-idf matrix, then 

generate a distance matrix (1 – similarity matrix). 

After this we generate a plot. In the plot we should 

see the clusters of the different documents.  

 
Figure 3  

k Means Step 1- Random Generated k (shown in color) 

 
Figure 4 

k Means Step 2 - Clusters Created by Associating with 

Nearest Mean 



 
Figure 5  

k Means Step 3 - Centroids become New Mean 

 
Figure 6 

k Means Step 4 - Previous Steps Repeated until Convergence 

The complete data analysis process, from 

reading the data to obtaining the cluster data can be 

summarized with figure 7. It can be summarized in 

six steps: reading the résumé data from text files, 

tokenizing each document into individual words, 

generating the term frequency-inverse document 

frequency (tf-idf) matrix, generating the clusters 

(using k-means), calculating the similarity, and 

plotting the results. These same steps can also be 

used when analyzing document style (such as fonts, 

font size, font style, document format). These data 

points can be entered into the system, to get a similar 

analysis about which document styling options make 

a document stand out. By comparing both of the 

resulting plots, it is possible to find what keywords 

attract more interest as well as which styling options 

seem to be preferred.  

 

 
Figure 7 

Resuminer Process 

By feeding an untested résumé (without any 

“interaction points”) to this system, and running it 

thought the same analysis, we’ll be able to determine 

which cluster it is closest to and we can make an 

educated prediction on how it will perform. We can 

determine if this résumé is closer to the cluster with 

the desirable scores, or with a low score. As the 

dataset grows, the approximations to the correct 

cluster will improve. 

TOOLS 

The data analysis will be done using scikit-

learn, a library for machine learning for Python. The 

scikit-learn libraries are well documented and 

available at http://scikit-learn.org. It is currently 

used extensively in the data science community for 



both academic research, as well as industry projects. 

Scikit-learn provides a range of supervised and 

unsupervised learning algorithms. In addition to 

scikit-learn, Jupyter Notebook (previously known as 

IPython) is being used as an interactive 

programming environment and documentation 

engine. It is available from http://jupyter.org. Jupyter 

Notebook runs as a server-client application in the 

web browser, it can be installed and executed locally 

or in a remote machine. Any notebooks created in 

this environment is easily portable to a different 

machine, and the code that is being executed can be 

documented.  

 
Figure 8 

Resuminer Running in Jupyter Notebook 

 
Figure 9 

Full Document Loaded in Jupyter Notebook 

 
Figure 10 

Performing tf-idf Analysis in Jupyter Notebook 

USER INTERFACE 

Users will be able to interface with the system 

through a regular web browser. The interface will be 

simple, it will display the database entries and will 

allow entering new data.  

 

Figure 11 

Display of the Database Entries in the Browser 

CONCLUSION 

All else being equal, there are infinite ways in 

which the same information can be conveyed. There 

are some qualities or styles of writing that make a 

document (a résumé, for the purpose of this work) 

stand out from the others. By tracking the interest in 

each unique document and applying data science 

techniques it is possible to have an understanding of 

which characteristics make a résumé stand out over 

other ones. Impact keywords could be a factor, but 

there are many others waiting to be discovered by 

applying other algorithms and gathering more 

training data.   

Below is the result of plotting and analyzing all 

the points with the current test data in the Resuminer 

engine. 

 
Figure 12 

Resulting Clusters 



FUTURE WORK 

In its current state, only the backend engine has 

been implemented, so it is not easy to create new 

data, it needs to be loaded manually. In order to be 

able to easily add new résumés and track their 

performance, a web based user interfaced needs to 

be developed. It will interface with the existing 

database, and will allow for a simpler data input 

process. It will need to interface with the current 

Python backend to process the data. Another feature 

to be added is to not only analyze the text in résumés, 

but the styling information as well- such as font, font 

size, font style, and any others styling properties. 

Analyzing the style data in conjunction with the text, 

may yield interesting results as to which styles of 

résumés grab the attention of recruiters. It is also 

possible that the current implemented algorithm is 

not the most efficient one, so other algorithms and 

data processing techniques can be explored. As more 

data is collected, there will be more training data 

available to use and test the predictions made by the 

algorithm.     
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