
Assessing SQL Server User Vulnerability and Data Loss

Sergio G. Medina Ríos

Master in Computer Science

Prof. Jeffrey Duffany, Ph.D.

Electrical & Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract  By using the tools provided by SQL

server we are going to verify some parameters on the

database user accounts to determine their

vulnerabilities. Run scripts to check if the users have

their account passwords set to expire or if they have

not changed their password in a while since this is a

security vulnerability. We want to prevent a

malicious user or a hacker to access out data and

compromise information and suffer data loss. In this

project we are going to develop a trigger that checks

whether the user account expiration has been

unchanged in a long time and user built-in tools like

reporting services to help the system administrator

to disable accounts that haven’t change their

password or notify if the user still active. Also, we

are going to assess the recovery of data that has been

erased at a row level by making use of the

transaction log.

Key Terms  Account Vulnerability, Backup,

MS-SQL, Privacy.

INTRODUCTION

This paper presents two issues that may arise

during the use of a database in a network

environment, as a DBA by myself I have

encountered different issues that have affected the

performance of my databases, from this experience I

have learned the importance of enhancing our

database security.

Database security involves hackers, viruses,

software vulnerabilities and lack of safety awareness

and other aspects. This requires us to strengthen

database security awareness and master certain

security technologies. First, the database security

threats, database security refers to the protection of

the database to prevent illegal use of information

leakage caused by alteration or destruction, the most

common are:[1] (a) internal staff error, this is the

most common potential risk, the most common cases

include: careless operation due to accidental deletion

or data leakage. Although this is not a hostile act, it

is clear that this behavior will cause some

unexpected data risk. (B) Social engineering

techniques used by attackers because legitimate

users unknowingly pass security secrets to the

attacker. In this case, the user may be compromised

by a website and other ways to provide information

to seemingly legitimate requests, like phishing

attacks. (C) The insider attacks many database

attacks originate from inside of the company. Wages

and interpersonal conflicts are likely to lead to

dissatisfaction of employees, resulting in increased

insider attacks. These internal personnel attacks that

have been driven by the desire for revenge or greed,

and are not affected by firewalls and intrusion

prevention systems are the most dangerous attack.

(d) Misconfiguration, a hacker could take advantage

of the security holes like having a guest account

enabled, thus bypassing the authentication method

and access to sensitive information. It is most

common when the people in charge of configuring

the systems did not know what to do or are working

with configurations beyond their knowledge. (E) An

unpatched vulnerability, attacks have new evolved

from public exploits to finer approach and constantly

challenge traditional intrusion detection

mechanisms. It is one of the hardest to manage

because of the zero-day attacks. The attacker can

immediately exploit code and have a fully open the

door to a database.

An important part of any security solution is for

accountability and compliance considerations and

the ability to audit. Auditing a database is not

enabled by default in SQL Server, however, you can

configure to monitor certain types of activities and

have a readable log that we can access to analyze or

recover data. In this project, we are going to develop

triggers to do auditing tasks.

RELATED RESEARCH

A database is a system for the retrieval and

storage of information in an easy way. The security

vulnerabilities occur mainly thru loopholes as a

consequence of a flaw in the system design of either

the hardware or the software allowing the access of

information by unauthorized users. Data breach may

be conducted either by unauthorized external users,

authorized or unauthorized internal users. The

databases more prone to be attacked are those that

are exposed outside their local networks especially

those that can be accessed via a web page which can

be attacked by the use of an exploit called SQL

injection. A way to determine the vulnerabilities of a

DB is by conducting a DB Vulnerability Analysis,

this check the can be done in five steps:

1. Information Gathering – Check the database and

the network where it runs to identify

information assets.

2. Penetration Testing – Conduct test to determine

the possibility of the database being

compromised (example SQL Injection), as you

can see in the graphic below here are the most

common SQL injection threats:

Figure 1

SQL Injection Logs Ratio from One Monitored Network in

May 2015 [2]

3. Security Auditing – Conduct an internal security

monitoring to verify the effect of the

penetration.

4. Fix scripts or patch the software – Normally the

security holes occur by the wrong use of stored

procedures that have unnecessarily elevated

privileges, also by unpatched systems. Robert

Sheldon in his article “How to Get SQL Server

Security Horribly Wrong”[3] mentions the 2003

Slammer computer worm that affected 75000

servers with SQL Server and within 10 minutes

of deployment the worm infected over 90% of

the vulnerable server and took down thousands

of databases. It is the perfect example of what

could happen if we don’t patch our systems

often. For this we can create a patch testing

computer, it can either be physical or virtual

although a VM is recommended, we can test the

patched on that computer that is an exact copy

of the production one and test the patched before

going live.

5. Report the findings.

SQL SERVER USER ACCOUNTS

EXPIRATION

We can increase the security by using a

password policy for users that access the database by

using SQL Server authentication. The script

developed in this project aim to further increase the

security by allowing the administrator to easily

identify the security status of an account, if an

account has expired password or if a user that is not

currently with the company and that account still

active it could be prone to be exploited by an

attacker. As normally end users do not understand

the implications of having their passwords

compromised, we have to create tools to help the

assessment of those issues.

To view the user account and the expiration of

the password we must first the account login

properties, we can do this by first connecting to the

server as an administrator and then check the user

information in the security login properties from

there we can enforce password policy and password

expiration.

Our script will check the users for their

expirations status, the expire an occur if a user does

not change the password for a long time, if there is

an expired account we will send a report to the

system administrator to prevent and resolve security

vulnerabilities. We also verify how long has passed

since the last password change by using the modified

date field from the SQL_Logins table from the

Master database which is the main database on SQL

server, this database stores information regarding the

configuration of SQL Server such as users,

maintenance plans, default stored procedures etc.

By analyzing the data we can see two major

problems, most of the users don’t have the password

expiration enable so the system will never force the

user to change their password, also if there is a

password policy where the user has to remember to

change their password by themselves, it’s clearly not

working as we can see there are users that has not

changed their password in over 80 days which is well

above the recommended 45 days. Also the users with

hashtags (##) before and after their usernames are

used only for internal use, and there are “hidden”

accounts used by the system. After verifying the

days passed since the last change to all users I

gathered the following data displayed in Figure 3.

Figure 2

Distribution of Password Longevity

As we can see from this graphic is that the

majority of the user have not changed their

passwords in more than 6 months which is clearly a

huge vulnerability problem, also only 12 accounts

are disabled which it becomes a matter of

investigation by the administrator to know which of

these users are still with the company as there might

be employees that are not working anymore, and the

human resources department has not notified that

information to the administrator yet.

With this we now make a report that will send

this information to the administrator in order to

verify if the users still with the company and if still

working send a warning message to the user, also,

this report helps the administrator to enhance the

security of their users by activating expiration and

password policy so this way the possibilities of the

account being compromised be lower. For this, we

use the Microsoft Reporting Services report

generator platform that comes built in with SQL

Server.

Data Loss Recovery

We have seen how to assess some of the most

common issues regarding the user security, but what

about how to manage the issue after the fact?, in this

section we are going to talk about recovery of

information once the attack has happened and what

steps should we take into consideration in order to

monitor unusual changes to the database.

In this paper we are going to concentrate on MS

SQL Server but this concept is similar to other

database technologies, I compared SQL Server with

other types of DB technologies (MySQL and SQL

Lite) and it share some important behaviors in where

the information stored is not physically removed but

instead is logically removed.

Full Recovery Mode

There are two types of set of recovery on SQL

Server, simple mode y full mode, under the simple

recovery mode there will be the risk of loss from the

last backup was made. The full backup mode the risk

of data loss is greatly reduced. We are going to

concentrate on full backup mode.

In Full Recovery mode, any changes will be

recorded in the database log file to give maximum

protection. In full recovery mode, we may also make

data recovery to any point in time within the range

of the log.

In the simple recovery mode, the log is almost

not managed. Every CheckPoint is likely to truncate

the log so that inactive VLF (Virtual Log File)

removed to reuse space. Therefore, in the simple

recovery model, log space usage is almost not

considered. In contrast, in full recovery mode, the

log data an important part of the restoration.

In full recovery mode, CheckPoint will not

truncate the log. Only backup logs will push back the

6% 2% 2% 2%
3%

3%

4%

20%

1%

57%

Days Passed Since Last
Password Change - All Users

1-20

21-40

41-60

61-80

81-100

Figure 3
Example of a Transaction Log

MinLSN and truncate the log. Therefore, a larger

volume of business systems, the growth rate of the

logs will become big quickly.

The Role of the SQL Server Transaction Log

Each SQL Server database will be by its

modified data (insert, update, delete) the order of the

corresponding log records to a log file. SQL Server

use the Write-Ahead Logging technology to

guarantee the performance and durability of the

transaction log, in fact, not only SQL Server,

basically mainstream relational database include

Oracle, MySQL, db2 are used WAL technology.

And this technology also greatly reduces the I/O

operation. The WAL core idea us that before the data

is written to the database it is first written to the

transaction log, then in the next checkpoint it will be

written to the database, so when a record is deleted

it will be marked as a ghost that will tell the database

engine to hide it from future queries even though the

underlying data still resides within the data page. A

garbage cleanup process runs periodically within

SLQ Server to physically remove the ghost records

within the data page so space can be reused.

The form SQL Server modify data, it will be

divided into the following steps:

1. Write "Begin Tran" in the log buffer in SQL

Server

2. Write the information you want to modify the

log buffer page of SQL Server

3. Write in data pages the SQL Server buffer the

data to be modified

4. Write "Commit" to record in the log buffer in

SQL Server

5. Place the log buffer to the log file

6. Send a confirmation message (ACK) to the

client (SMSS, ODBC, etc.)

The above steps can be seen, even if the

transaction has come to commit stage, just log pages

are written to the log buffer, and no data is written to

the database. It will be when modified data pages are

written to the database [4].

The page buffer is written to disk by one of two

processes to achieve:

These two processes are [5]:

1. Lazy Writer- Lazy Writer purpose is to manage

the buffer. When the buffer reaches a certain

critical value, Lazy Writer will store in a disk

file in the buffer zone whereas the unmodified

pages are released and resources recycled.

2. CheckPoint – The functions of Checkpoint is to

reduce the recovery time of the system.

CheckPoint like his name, as indicated, is an

archive point. CheckPoint occur regularly. The

"dirty" page buffer is written to disk. In addition

to the automatic CheckPoint, CheckPoint will

happen when the Alter DataBase and shut down

SQL Server commands are executed.

Any buffer is modified pages will be marked as

"dirty" page. Dirty pages are written to disk is

CheckPoint or Lazy Writer jobs.

To illustrate some important fields (See Fig. 3):

 CurrentLSN: Current LSN number, the

transaction log for each record by a unique log

sequence number (LSN).

 Operation: Operation current LSN made.

 Context: Context operation.

 TransactoinID: Transaction ID Number.

 The share of fixed-length record LSN virtual log

file: Log Record Fixed Length.

 Previous LSN: previous LSN number.

 AllocUnitID: modified piece of data relevant to

the allocation unit ID.

 AllocUnitName: Modify the table data.

 Slot ID: data where the first few pages of data

recording.

In my times as a DBA this was one of the first

issues I encountered as the company I work had a

problem with the transaction log that it grew so big

that the hard drive that hold the TLog became full

and the DB crashed, the size of the TLog had grown

up to 80GB, the problem was that they were not

performing the log backup correctly

Therefore, the purpose of the log backup into the

following two:

 Reduce the size of the activity log

 Reduce the risk of damage to the log

You can see from the chart by the excerpt from

the MSDN:

Figure 4

Backup Strategy under Full Recovery Model

In this case, DB_1 has a complete backup, and

there is two log backup (Log_1 and Log_2), soon

after the backup of Log_2 a loss of data happens.

Then if the log file is intact, you can back up the

active log (Tail of log), began to recover from DB_1,

followed by recovery Log_1, Log_2, and then

restore the database to a point in time when a disaster

occurs. Theoretically the data loss is zero. The

difference to recover from a full or differential

backup is great as normally the full backups occur

every 24 hours if the DBA do it like is recommended

[6].

The transaction log is a file of extension .ldf and

it contains all the data necessary to recover the

database. From the inside of this there are virtual log

files (VLF), this is a place of separation on the

TLOG, it happens when the transactions are not

active, when this occurs, and the log file does not

contain any more active transactions then is

truncated to make up space for new transactions. It

happens because SQL Server storage engine works

this way so that the transaction log management is

more effective. VLFS number and size cannot be set

by the configuration, but is managed by SQL Server.

When the Create or Alter database, SQL Server

through ldf file size determine the size and number

of VLFS. When the log file grows, SQL Server will

be re-planning of the number of VLFS.

Note: According to this principle is not difficult

to read, if you set the log file is too small increments,

it will produce too much VLFS, which is the log file

fragmentation, excessive log file fragmentation will

hit SQL Server performance.

The segments of the VLF can be divided into the

following four categories:

1. Active- VLF stored on any LSN that is active,

the VLF was active, even if a tiny part of the

VLF contains an LSN.

2. Recoverable (Recoverable) - VLF is inactive,

the VLF does not include activities LSN but has

not yet been cut off (truncated).

3. Reusable (Reusable) - VLF is inactive, the VLF

does not include activities LSN, it has been cut

off (truncated), can be reused.

4. Unused (Unused) - VLF is inactive and has not

been used.

Logical Organizational Structure of the

Transaction Log

Before saving any modifications made to the

database objects in the database, the corresponding

log will first be recorded in the log file. This record

will be recorded in accordance with the order of

logic to the end of the log file, and assign a globally

unique log sequence number (log sequence number,

referred LSN), the serial number is entirely in

accordance with the order, and if the log sequence

number two LSN2> LSN1, then the occurrence of

after LSN2 where LSN1.

It can be seen from consideration in the log file

is divided into a plurality of files in addition to disk

space. Image data that cannot be completely parallel

access, so the log file is divided into a plurality will

not have performance improvement.

LSN number can be seen as a link to a log file

and record data between the LSN of each log is not

only numbers, as well as the corresponding

transaction log [7].

Many types of operations are recorded in the

transaction log. These operations include:

 The beginning and end of each transaction.

 Every data modification (insert, update, or

delete). It includes system stored procedures or

data definition language (DDL) statements

made to any table, including system tables,

including changes.

 Each allocation or release area and page.

 Create or delete a table or index.

If we need to restore data we can simply restore

the main database and then restore the transactions

logs, however for the purpose of this project we are

going to restore specifics rows from the transaction

log. The purpose of this could be for forensic

investigation or to restore a very important

transaction on the database that was there at a certain

point in time without changing anything else in the

current system but before we restore those rows we

need to know when the row was changed or deleted

and for this we need to have the necessary auditing

tools available, we can use the SQL Server auditing

features but this may have an impact in the server

performance depending the configuration, for the

purpose of this project we analyze the need of a

company who needed to record all the payment

transactions that have been deleted, this deletion can

occur if the user made a mistake with the transaction

and needed to redo it again but also it could mean

that the transaction was in purpose deleted, in order

to catch the data in the moment of the transaction

occurs we made an Trigger that activates when a

specific action is done against the table, in this case

a delete, in where we capture the user, the transaction

number and the date inserting that information in a

user defined audit-table.

With this information, we can proceed to

recover the data from that point in time. NOTE: It is

important to note that this process will not work if

we don’t have the exact date and time of when the

record was modified, if we don’t have this data,

recovery at row level will not be possible, that is why

is very important to have the auditing tools like the

ones built-in on SQL Server or the custom made like

the one on this experiment also this is having into

account that the DB is backed up every 24 hours.

Now, we are going to backup the database when

nothing was stored:

backup database Database_Demo

to disk='C:\bkp\Database_Demo.bak'

Then, we backup the log file of current state.

backup log Database_Demo

to disk='C:\bkp\Database_Demo_LOG1'

Then, we disable database access to network

users by setting up in Single Mode.

ALTER DATABASE Database_Demo

SET SINGLE_USER WITH

ROLLBACK immediate

Then, we restore the last full backup of the

database before the change was made.

Restore database Database_Demo

from disk='C:\bkp\Database_Demo.bak'

with replace,norecovery;

Then, we restore the Transaction log of the date

the change was made, this script will tell SQL Server

to restore the entire TLog backup without the

modified transaction so this way the change is not

committed to the DB.

Restore log Database_Demo

from disk='C:\bkp\Database_Demo_LOG1'

with recovery, stopat = 'Sep 11, 2015 05:20:00 PM'

go

Finally, depending on how far back the

transactions were modified we have to restore each

subsequent TLog to the present time.

This procedure helps companies restore critical

information without affecting other transactions.

CONCLUSION

Database security is the main focus of a DB

Administrator to prevent leakage of information

from and entity or from an individual user. Database

security vulnerabilities are mostly because of human

error or software bugs. If a malicious user gets access

to that information, it can cause great harm to the

company. The user account expiration vulnerability

check made in this project helps to reduce one these

vulnerabilities. These features can be further

strengthened and help effectively protect the

information of the user by preventing one of the

main end user issues in a computer environment that

is changing their passwords.

This paper analyze the logical and physical

architecture of the transaction log as a way to

understand how to use SQL Server log to ensure the

basic durability and data backup and recovery. We

also introduced the CheckPoint and Lazy Writer, for

the understanding of these concepts is fundamental

to understanding SQL Server DBA work.

We have proven that we can recover

information in a secure way after being deleted at a

row level as long as we have the dated of the change

and the necessary backup files. There is now way to

stop data breach or loss, that’s why we must have all

the tools available to help combat those threats, some

companies does not know that they have some of

those tools available for free built in the DB, as most

of computer systems, there is always a way to

recover data that has been compromised in any way

if we have an organized backup and restore policy.

This way we can reduce the possibilities of losing

important information

FUTURE WORK

This project has helped me to understand some

concepts of database systems that I did not know,

after this I’m planning to make a research about

auditing databases using the built-in tools without

having a significant impact on the server

performance. Also, I will try to replicate the user

accounts vulnerabilities by using SQL injection.

REFERENCES

[1] C. Osborne. (2013). The top ten most common database

security vulnerabilities | ZDNet [Online]. Available:

http://www.zdnet.com/article/the-top-ten-most-common-

database-security-vulnerabilities/. [Accessed: 5-Oct-2015].

[2] R. Sheldon. (2015). How to Get SQL Server Security

Horribly Wrong, Simple-talk.com [Online]. Available:

https://www.simple-talk.com/sql/database-administration/

how-to-get-sql-server-security-horribly-wrong/. [Accessed:

5-Oct-2015].

[3] A. Kaploun. (2015). The Latest SQL Injection Trends |

Check Point Blog [Online]. Available:

http://blog.checkpoint.com/2015/05/07/latest-sql-injection-

trends/. [Accessed: 5-Oct-2015].

[4] Technet.microsoft.com. (2015). SQL Server Transaction

Log Architecture and Management [Online]. Available:

https://technet.microsoft.com/en-us/library/jj835093%28

v=sql.110%29.aspx. [Accessed: 5-Oct-2015].

[5] Technet.microsoft.com. (2015). Checkpoints and the Active

Portion of the Log [Online]. Available:

https://technet.microsoft.com/en-US/library/ms189573%28

v=sql.90%29.aspx. [Accessed: 05-Oct-2015].

[6] Technet.microsoft.com. (2015). Backup under the full

recovery model [Online]. Available:

https://technet.microsoft.com/en-us/library/ms190217%28

v=sql.105%29.aspx. [Accessed: 04-Oct-2015].

[7] Technet.microsoft.com. (2015). Transaction Log Logical

Architecture [Online]. Available:

https://technet.microsoft.com/en-us/library/ms180892%28

v=sql.105%29.aspx. [Accessed: 03-Oct-2015].

