
Using Frequency Analysis to Decrypt Monoalphabetic Ciphers

Omar Rodríguez Laborde

Master in Computer Science

Dr. Jeffrey Duffany, Ph.D.

Electrical & Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract  Over the past few years’ technology

has taken over society. Everyone uses technology. It

makes everything easier, such as paying bills,

buying food or any stuff that you use in your daily

basis. People tend to store all the information on

their online accounts such as; credit card numbers,

address, personal information and others, all this

without knowing how easy or hard is to a malicious

person get into all this information. In order to

understand this you have to think as an hacker,

that’s the only way you can help yourself and help

others to understand how this people are getting

thru all the security measures that companies are

trying to use. Companies’ security is only 50% of

the equation, the other 50% is you as a user and

how well you are using the tools that this company

give you. Some of the hacker technique are:

Frequency Analysis, Brute Force, phishing, etc.

Frequency Analysis is a fundamental cryptanalytic

technique that can be applied to any

monoalphabetic cipher. The proposed program

uses combined techniques of monogram, bigrams,

trigram, frequency analysis, keywords rules and

dictionary to decrypt monoalphabetic ciphers.

Key Terms  Ciphers, Cryptanalytic, Decrypt,

Monoalphabetic.

INTRODUCTION

A monoalphabetic cipher [1], uses the same

substitution across the entire message. For example,

if you are able to decrypt the letter T and now you

know that the letter T is D, this will not change for

the entire message. Some examples of

monoalphabetic ciphers [1] are: Caesar cipher,

atbash cipher, keyword cipher, pigpen cipher, etc.

All this type of ciphers can be cracked by using

frequency analysis, and trial and error.

Frequency Analysis [2] is the study of the

frequency of letters or groups of letters in a cipher

text. For each language there is a different

frequency order from the most to the less used

letters of that language. N-grams [3] are constantly

used in frequency analysis [2]. An n-gram is

contiguous sequence of n items from a given

sequence of text or speech. With this data you can

also create most used bigrams and trigrams. For

instance given a section of the English language E,

T, A, O, I, N, S are the most commons letters, TH,

HE, IN, ER, AN, RE, ND are the most common

bigrams and THE, AND, ING, HER, HAT, HIS are

the most common trigrams.

Using this information you can create a more

easy approach at the moment where you need to

decrypt a monoalphabetic cipher [1] without

knowing what cypher was used to encrypt the

message or what key was applied to encrypt the

message.

Some of the challenges of this project are how

to make a substitution and identify that those

substitutions are correct, how to combine all the

data to increase the chance of make a correct letter

swap, identify words after swapping letters, parse

the message correctly and confirm that the message

make sense and confirm that you successfully

decrypted the message. The program I created in

this project uses monograms, bigrams, trigrams,

brute force, English dictionary of 100,000+ words,

in order to decrypt [4] the message without any user

input.

HISTORY

Al-Kindi is credited with developing a method

whereby variations in the frequency of the

occurrence of letters could be analyzed and

exploited to break ciphers. This was around AD

800, since then frequency analysis [2] have been

used in rotor machines, World War I, World War

II, etc.

In the present there is different websites and

applications that have the options to do a frequency

analysis [2] to a text, but none of them have the

ability to decrypt the message without a user

feedbacks. So basically those website can help a

user to do letter swaps and show the new text but

doesn’t have the capabilities to know without any

user input if the text is correct or if is needed to do

more letters swaps in order to completely decrypt

the message.

All this different applications in our world right

now tend to help but this program tries to

automatize the frequency analysis [2] in order that

doesn’t required the user interaction that needs all

the others.

PURPOSE

The only ways where you can break any of the

different monoalphabetic ciphers [1] using the same

approach are brute force [5] or frequency analysis

[2]. If you use a brute force to break a

monoalphabetic cipher [1] would be 26 letters per

mutating 26 times equals 4.03291461126606E+26

tries. On a computer this amount of tries would take

years to execute. So what we got left is the

frequency analysis [2].

This application takes frequency analysis [2]

and facilitate the decryption of any monoalphabetic

cipher [1] automatically. Just need to provide the

text as showed in Figure 1 and the program do the

rest.

Figure 1

Main Page – File Path Input

Using this application you have the advantage

of having an automated program breaking a cipher

[1] without needing to wait years to obtain the

decrypted code using brute force or without having

to provide any data input to the application.

SCHEME

The application will run using the input text or

the input file by the user and will allow the user to

do different options with this encrypted text.

In the folder where the application is started,

some data files will be required Referred to Figure

2. Those files are:

 List of most used monograms

 List of most used bigrams

 List of most used trigrams

 List of most used quadgrams

 List of most used quintgrams

 English Dictionary

 List of most Used English words

The application will start taking the input text

and changing all letters to lowercase, deleting any

spaces between words, and also deleting any

special characters from the text.

Figure 2

N-grams Files [3]

There is a function that will replace letters in

the encrypted text, each time that the program

replace a letter in the text the new letter will be

uppercase in order to the application remember

which letters have been already swapped, then the

application will do a statistical approach in order to

select which one of all the letters combinations fit

best and makes more sense out of the unencrypted

text. Then another function will try to find words

of 4 letters plus in the selected combinations in

order to confirm that this is the right combination in

order to break the unencrypted text.

TECHNOLOGIES

For this application two programming

languages where used in order to create a balance

between coding speed and performance. Those

programming languages are:

 Python

 C# [6]

C# [6] provides a tight integration with the rest

of .NET framework and other Microsoft products.

The integrated development environment used was

Visual Studio 2015, this IDE is perfect for the C#

[6] environment and a library was used in order to

be able to integrate Python with C# [6], this library

is IronPython, this allow to use subroutines in

python and receive the results on C# [6].

IronPython is an implementation of Python

language looking for integrate python with .NET

Framework and Mono.

One of IronPython's key advantages is in its

function as an extensibility layer to application

frameworks written in a .NET language. It is

relatively simple to integrate an IronPython

interpreter into an existing .NET application

framework. LINQ extends the C# [6] language by

the addition of query expressions such like SQL

statements, this option facilitate the extract and data

process from arrays and enumerable classes. Refer

to figure 3 and figure 4 to see Python integration in

C# [6] and LINQ uses inside C# [6].

In order to be able to search inside those big

files I had to do some performance test in order to

provide what was the best way to search patterns on

the files. And I found that Regular Expressions was

the way to go. Regular Expressions is a pattern that

the regular expression engine attempts to match in

input text. A pattern consists of one or more

character literals, operators, or constructs. The

regular expressions also helped to create dynamic

functions for different kind of uses such as get any

size of n-grams [3] from a text, get different size of

words in the dictionary, and find words with a

certain prefix, suffix or both. Figure 4 have an

example of the regex uses in C# [6].

Figure 3

Python Integration in C# [6]

Figure 4

LINQ and Regex Integration in C# [6]

REQUIREMENTS AND OBJECTIVES

This application will provided the user’s ability

to break any monoalphabetic cipher [1] while the

user can work in a different task. This application

objective to fulfill are:

 Automation of Frequency Analysis [2]

decryption

 Balance performance and optimization in order

to provide a quality application

As a requirement the application should be able

to manage any type of encrypted text data with

lowercase, uppercase, special characters, space

between words or letters and without any space.

The application should be able to manage English

text. The application should be able to run in a

standard grade PC. The application should be able

to manage any type of monoalphabetic encryption.

CONSIDERATIONS

The project accomplish all the requirements

mention before. There was some tasks that wasn’t

easy to accomplish such as:

 Maintain Performance – in this type of projects

always have to maintain a balance between

how accurate the program is and how is the

performance. Sometimes you have to choose

between being more accurate and maybe take a

little longer in order to provide the results or

give a faster result with some probability that

the answer is not accurate as expected.

 Parsing of the sentences - encrypted text does

not contain any space or special characters, so

basically at the end of the result you have to set

the spaces between words, and have to make

sure that it make sense.

 Selection of best combination – this was a

really big challenge, in order to being able to

choose which was the best combination I had

to create a function to find words inside the

whole plain text counting the words amount I

had to eliminate all the words that contain 4

letters or less in order to take out of the

equation some combinations that contains false

positive.

In addition, the application contain few others

functions in order to facilitate the user ability to

find in the encrypted text any kind of n-gram,

missed letters, and doubled letters. This functions

are standards in any frequency analysis [2]

application. Including the Requirements list, the

project design and the development of the tool, we

need to take into consideration the results of this

application and prove that the needs for the user a

fulfilled and over expectations. In figure 6 you will

be able to see the main menu of the program. We

will see the functionality of the program since the

program is started and the user is asked to input a

text manually to encrypt it or upload a .txt already

encrypted.

The menu of this application have been done

simple enough to any kind of user being able to

make use of all the applications advantages without

any training in it.

Coming up next, the result of this project will

be presented. Providing better view of the tool

which makes this work and it processes.

RESULTS

This application will be available for the use of

researchers, students and any professional on the

computer security field. Everyone will find this

application appealing because is not time

consuming and it works as intended. The

application consist of different kind of options.

Some of the options are:

 Upload .txt or Data Entry – how data will be

entered to the program.

 Get Letters Count – do the normal frequency

analysis of the cipher text.

 Get Ngrams – Create a list of n-grams with the

user entry amount of the cipher text.

 Get missing letters – Create a list of missing

letters from the cipher text.

 Get repeated letters – Create a list of double

letters in the cipher text.

 Decrypt Message – Decrypts the cipher text.

 Exit – close the application.

The following figures show the results for the

different options in the application.

Figure 5

.txt File Upload

Figure 6

Main Menu - Get Letters Count

Figure 7

Main Menu - 3-letters N-gram

In the figure 10 you can take a look of how the

program selects what is the best combination for

the unencrypted text, then he separates each words

to make sentences with more logic. All the words

are compare to a dictionary to make sure each one

of the words make sense, and there is nothing

without unencrypt.

Figure 8

Main Menu - Missing Letters

Figure 9

Main Menu - Repeated Letters

Figure 10

Main Menu – Decrypted Message

FUTURE WORK

Some implementations that can be done to the

program for the future are:

 Adding more languages to the application.

Right now it only support English language.

 Create a Function in order to detect the

sentence without needing to loop for the best

combinations. This will also help the

performance of the program.

 Create a Web Page interface in order to

provide a more User Friendly Program.

 Create a second validation of the data result in

order to provide a more accurate data.

With this changes, the application ensures a

solid future.

CONCLUSION

This application was able to decrypt

monoalphabetic ciphers in more than 75% of the

cases. The estimate time for any cipher size would

be between 55minutes to 75 minutes. This tool is

able to decrypt any type of ciphers without any

issues. The ram data needed to run the application

is 2GB.

This proves that any monoalphabetic cipher are

unlikely to provide any real protection for

confidential data.

ACKNOWLEDGEMENTS

This project would like to acknowledge Dr.

Jeffrey Duffany for his contribution of ideas and

guidance during the project and the knowledge

provided in the different courses.

REFERENCES

[1] D. Rodriguez-Clark (2013). Monoalphabetic Substitution

Ciphers in Crypto Corner [Online]. Available:

http://crypto.interactive-maths.com/monoalphabetic-

substitution-ciphers.html.

[2] M. Markowitz (2004). Frequency Analysis in Wikipedia,

Wikimedia Foundation [Online]. Available:

https://en.wikipedia.org/wiki/Frequency_analysis.

[3] M. Davies (2014). N-grams: Based on 520 million word

COCA corpus, in Ngrams Data. [Online]. Available:

http://www.ngrams.info/.

[4] M. Rouse (2008). What is data encryption/decryption IC? -

definition from SearchSecurity. [Online]. Available:

http://searchsecurity.techtarget.com/definition/data-

encryption-decryption-IC.

[5] M. Crypto (2004). Brute-force attack, in Wikipedia,

Wikimedia Foundation [Online]. Available:

https://en.wikipedia.org/wiki/Brute-force_attack.

[6] M. Corp (2003). C# Reference from Microsoft Corp.

[Online]. Available: https://msdn.microsoft.com/en-

us/library/67ef8sbd.aspx.

