# Aircraft Wing Spanwise Air-Load Distribution using MATLAB 

Jonathan Holguino Borda,
Master of Engineering in Mechanical Engineering
Héctor Rodríguez, Ph.D.
Mechanical Engineering Department
Polytechnic University of Puerto Rico


#### Abstract

Aircraft design is a complex task that involves the interaction between aerodynamics, propulsion, flight mechanics and structures. In particular, the structural design tasks involve the consideration of a significant number of load conditions that affect the performance of the aircraft from the moment it takes off to the execution of its mission and eventual landing. A critical aspect in the design of aircraft structures is the determination of the aerodynamic loads. These loads are especially important for the design of air lifting components such as wings and tails. The


 required level of detail and accuracy for these loads depend on the stage in the design process. For example, during the concept and preliminary design stages, the aerodynamic loads could be estimated using simplified analytical approaches such as the Schrenck method, Diederich method, and Fourier series, among others. The purpose of this paper is to discuss the development of a Matlab© tool to determine the air loads for the preliminary design of wing structures using the Shrenck method. The tool requires the user to provide basic geometric information about the wing and airfoil aerodynamic data. The output provides the wing lift, drag, shear, moment, and torsional loads distributions. This information can be used then by the structural designer to perform the structural evaluation of the wing structure. As shown in the article, the results compare very well to published results.Key Terms — Loads to Airplane, Lift to Spanwise, Matlab Airplane, Air-load Distribution.

## Wing Load Distribution

Loads on the wing are made up of aerodynamics lift and drag forces, as well as concentrated or distributed weight of wing-mounted engines, stored fuel, weapons, structural elements,
etc [1]. Figure 1 show the span-wise wing-loading distribution.

The FAA (in Advisory Circular) shows different methodologies for calculating the airloads distribution such as: ANC - 1, Schrenk's NACA TM-948, Sherman's NACA TN-732, etc. [2].

## Schrenk's Approximation Method

This method is used to approximate to spanwise lift distribution on the wing see figure 1 . The fundamental idea of this method is made that the real lift distribution lies between an ideal distribution independent of the wing shape and a distribution determined in a simple manner by the wing shape. The ideal distribution is that with minimum induced drag and constant induced downwash velocity that is, for the usual monoplane, the elliptic distribution; while the distribution dependent on the shape is proportional to angle of attack at each position of the wing. [1]

Schrenk assume that wings with no aerodynamics twist, constant airfoil section on the wing, and the distribution is the average of:

- A load distribution representing the actual planform shape and
- An elliptical distribution of the same span area.

This approximate solution is accepted by the Civil Aeronautics Administration (CAA) and 14 CFR part 23, sub part C. [2].


Figure 1 Spanwise Lift Distribution

As a consequence of the finite aspect ratio of any wing, the lift distribution will vary along the wingspan, from a maximum near its root to a minimum near its tip. [3] See Figure 2, the method shown that the span-wise lift distribution should be proportional to the shape of the wing planform. In the case of an elliptical planform, the local chord distribution, $\mathrm{c}(\mathrm{y})$ given as:

$$
\begin{equation*}
\operatorname{ccl}(y)=\frac{4 S}{\pi b} \sqrt{1-\left(\frac{2 y}{b}\right)^{2}} \tag{1}
\end{equation*}
$$



Figure 2
Elliptical Distribution
Where: S is the total area of wing, b is the span wing.

In the Peery's book explain that the untwisted wing occur when zero-lift chords of all airfoil sections lie in the same plane, the wing has no aerodynamics twist [5]. Normally the wings have thinner airfoil sections near the tip than near the root, also the airfoil section to along the wing has no the same angle of attack, this characteristic is for advertise to stall, but these different angles produce aerodynamic twist, see Figure 3.


Figure 3
Aerodynamic Twist
The air-load distribution for wings with aerodynamic twist should be obtained in two parts. The first part, called the basic lift distribution, is obtained for the angle of attack at which the entire
wing has no lift, and the second part, called the additional lift distribution, can be obtained by Schrenk's method [5].

## Matlab Tool

Using the equations from Schrenk's Method for determinate the Spanwise air-load distribution and considerations for ANC-1(1) [4].

Was developed a tool in the GUI Matlab see figure 5 , this tool has the following parts:

- Wing Geometry.
- Additive Lift Distribution.
- Basic Lift distribution.
- Stall Cl calculation.
- Correction Factor ( $\tau$ )
- Spanwise Coefficient Distribution
- Spanwise Air-Loads Distribution for specified CL and true airspeed V

And the tool GUI has a flowchart as shown in Figure 4.


Figure 4
Air-Load Distribution Flowchart


Figure 5
Air-Load Distribution Main Window

## Wing Geometry

In this part, the user enters a number of wing stations, a number of points that define the Leading edge and Trailing edge as shown in Figure 6.

The module calculates; total wing span area, the mean aerodynamic chord (mac), coordinates in leading edge from mac, and aspect ratio.

The equations used to calculate are the following:
$m a c=\frac{2}{S} \int_{0}^{b / 2} c^{2} d y$
$y_{m a c}=\int_{0}^{N 0 d y} \frac{y \cdot c}{s / 2} d y$
$x_{m a c}=\int_{0}^{N o d y} \frac{x \cdot c}{s / 2} d y$
$A R=\frac{b^{2}}{s}$
Where: c is the chord and It's function of the y , x are the coordinates in leading edge, y is the coordinate discretized of the large to span, $s$ is the total wing span area., Nody is the number of part the wing span, and AR is the aspect ratio.


Figure 6
Wing Geometry

## Additive Lift Distribution

In this section, the user enter, a number of wing stations, distance of the wing station regarding wing root in inches, and slope of the section lift with respect to the angle of attack in degree angles $\mathrm{m}_{0}$, as shown in Figure 7.

In this case the module calculates; the $\mathrm{cc}_{\mathrm{la} 1}$ is the chord per additional lift coefficient corresponding to $\mathrm{C}_{\mathrm{L}}=1$ for the entire wing, and its corresponding additional lift coefficient $\mathrm{c}_{\mathrm{la}}$.

The equations used to calculate are the following:
$c c_{l a 1}=\frac{1}{2}\left[\frac{m_{0} c}{\bar{m}_{o}}+\frac{4 S}{\pi b} \sqrt{1-\left(\frac{2 y}{b}\right)^{2}}\right]$
$\bar{m}_{o}=\frac{\int_{0}^{\frac{b}{2}} m_{0} c \cdot d y}{S / 2}$
$c_{l a 1}=\frac{c c_{l a 1}}{c}$
Where $\bar{m}_{0}$, is the average slope of section lift coefficients, $m_{0}$ is the slope of the section lift coefficient in respect to angle of attack in degree.

These equations from Peery's book [5].


Figure 7 Additive Lift Distribution

## Basic Lift Distribution

As shown Figure 9, the user enter a number of wing stations, distance of the wing station regarding wing root in inches, the wing station reference angle, this reference is formed to chordwaterline regarding to angle zero of each section, and continuity or discontinuity value.

The output data shows, the wing angle of attack for zero lift, the basic lift coefficient, and the equations used to calculate this module are following:
$\alpha_{w 0}=\frac{\int_{0}^{b / 2} m_{0} \cdot \alpha_{a r} \cdot c \cdot d y}{\int_{0}^{b / 2} m_{0} c \cdot d y}$
$\alpha_{a}=\alpha_{a r}-\alpha_{w 0}$
$c c_{l b}($ rounded off $)=\frac{1}{2} c m_{0} \alpha_{a}$
Where; $\alpha_{w 0}$ is the wing angle of attack for zero lift, this angle is solved for the absolute angle of attack $\alpha_{a}$, the $\alpha_{a r}$ is the reference angle regarding angle zero lift, and $\mathrm{cc}_{\mathrm{lb}}$ (rounded off) is the chord per basic lift coefficient but rounded off.

When shown in the Figure 8, the wing has length 1 of discontinuity between flap and aileron.


Figure 8
Wing with Discontinuity Flap-Aileron
$l=\frac{a}{2}$ if $a>b$
$l=\frac{b}{2} \quad$ if $a<b$
When, the abrupt change in the curve of $c c_{l b}$ at the outboard end of the flap as shown in the figure (8), the curve is faired so that the positive area removed is equal to the negative area removed, and the total wing lift remains zero [1].

According by H.C. McMaster [6], the equations for $c c_{l b}$ (faired) are following:
$\theta=\frac{\pi}{2 \cdot l}\left(\int_{0}^{b / 2} d y-y_{\text {lin }}\right)$
$y_{\text {lin }}=y_{\text {disc }}-l$

$$
\begin{align*}
c c_{l b}(\text { Faired })= & \left(c c_{l b}-c c_{l b}(\text { ave })\right) \cdot\|\cos (\theta)\|+ \\
& c c_{l b}(\text { ave }) \tag{16}
\end{align*}
$$

Where $\theta$ is the angle used in cosine function in the basic lift coefficient at faired, $y_{\text {disc }}$ is the butt line at discontinuity of flap and aileron, and $c c_{l b}$ (ave) is the average element lift at discontinuity.


Figure 9
Additive Lift Distribution
Stall Cl Calculation
In this part, require enter the wing stations, the first maximum lift coefficient $\mathrm{C}_{11 \max }$, first Reynolds number and second maximum lift coefficient $\mathrm{C}_{12 \max }$ and its Reynolds number, shown as Figure 10.


Figure 10 Stall Lift Coefficient Cl

## Correction Factor ( $\tau$ )

According of Peery's book $\tau$ is a correction factor which accounts for the deviation of the planform from an ellipse [1].

In this module shown as in the Figure 11, used the equation according to ANC-1(1) [4].
$\tau_{0}=0.026209-1.26146 \lambda+3.05385 \lambda^{2}-$ $2.8027 \lambda^{3}+0.976801 \lambda^{4}$
$\tau_{1}=0.112203-0.575843 \lambda+1.08306 \lambda^{2}-$
$0.696856 \lambda^{3}+0.194241 \lambda^{4}$
$\tau_{2}=0.0302789+0.0294027 \lambda-0.470926 \lambda^{2}+$
$0.880983 \lambda^{3}-0.394766 \lambda^{4}$
If $\gamma=0$, then $\tau=\tau_{0}$
If $\gamma=0.1$, then $\tau=\tau_{1}$
If $\gamma=0.2$, then $\tau=\tau_{2}$
If $\gamma=1$, then $\tau=0$
For $\gamma$ that are between the values of the conditionals equations (20),
For $0<\gamma<0.1$ then, $\tau=\tau_{0}+\gamma\left(\tau_{1}-\tau_{0}\right) / 0.1$
For $0.1<\gamma<0.2$ then, $\tau=\tau_{1}+(\gamma-0.1)\left(\tau_{2}-\tau_{1}\right) / 0.1$
For $0.2<\gamma<1$ then, $\tau=\tau_{2}-\tau_{2}(\gamma-0.2) / 0.8$
For $0.2<\gamma<1$ then, $\tau=\tau_{2}-\tau_{2}(\gamma-0.2) / 0.8$
$\lambda=\frac{c_{t}}{c_{s}}$
Where, $\boldsymbol{\lambda}$, is the ratio between the tip chord and the centerline root chord, $\boldsymbol{\gamma}$, is the ratio of rounded tip length lo length of semi-span as shown in the Figure 12.


Figure 11
Correction Factor $\mathbf{t}$


Figure 12
Ratio $\gamma$

## Spanwise Coefficient Distribution

As shown in the Figure 13 of this module, the user can be to use for calculates the aerodynamics coefficient distribution to along the wing and the input data requirements are: $\tau$ is the correction factor, the total lift coefficient of wing $\mathrm{C}_{\mathrm{L}}$, the wing station with their drag coefficients and their moment coefficients.


Figure 13
Spanwise Coefficient Distribution
In case to use the value of $\boldsymbol{\tau}$ evaluated in correction factor module, the input of $\boldsymbol{\tau}$ in Spanwise.

Coefficient Distribution is no necessary, because the space of $\boldsymbol{\tau}$ will be disable, but charged the previous analysis. The other form for determined the $\boldsymbol{\tau}$ value is using the Figure 14.

For the drag and moment coefficient values is found in diagrams the airfoils making up the wing.

This module use data output of previous modules, therefore calculate previous modules is necessary according flowchart from the Figure 4.


Figure 14 [4]
Correction Factor for Induced Angle of Attack, $\tau$
The equations to use for this module are: The value of lift coefficient per unit of span is:
$c_{l}=C_{L} c_{l a 1}+c_{l b}$
With the value of factor correction $\tau$, the values of lift curve slopes can be solved as.
$m=\frac{m_{0} \cdot 180 / \pi}{1+\left(\frac{m_{0} \cdot 180}{\pi^{2} A R}\right)(1+\tau)}$
Then, the new angle of attack solve to such as.
$\alpha_{a}=\frac{C_{L}}{m \cdot \pi / 180}$
The induce drag coefficient for an elliptical wing is
$C_{D i}=C_{L} \alpha_{i}$
The induce angle is defined as:
$\alpha_{i}=\alpha_{a}-\frac{c_{l}}{m_{0}}$
Where $C_{L}$, is the lift coefficient on the wing, $c_{l}$ is the section lift coefficient, and $m_{0}$ is the slope of section lift coefficient.

See Figure 15 for the typical angles that form the section wing.


Figure 15 Typical Wing Angles

## Spanwise Airloads Distribution for Specified Cl

 and True Velocity VIn this part, the users enter a value of true velocity from aircraft, the waterline distance of $25 \%$ from root chord, and the angle dihedral see Figure 16.


Figure 16
Water Line and Dihedral Angle


Figure 17
Spanwise Coefficient Distribution
As shown in the Figure 17, the distribution the lift W , is the distance function of the wing, and the shear force V , is related to the resultant load as.
$W=\frac{d V}{d y}$
The bending moment M , acting on the element is related to the shear force by
$V=\frac{d M}{d y}$

In integral form,
$V=\int W d y$
And
$M=\int V d y$
These integrals can be approximated by sums, namely,
$V=\sum_{i}^{N} W_{i} \Delta y$
And
$M=\sum_{i}^{N} V_{i} \Delta y$
The similar form is calculated for the torsion force.

The distribution of $\mathrm{W}, \mathrm{M}$ and dy is shown as in the Figure 18


Figure 18
Schematic Representation of the Shear Force and Bending Moment on a Span-wise Element of the Wing

## SAMPLE TOOL AIRLOADS

The tool Matlab was validate using data inputoutput from H.C. McMaster, "FAR 23 LOADS" [6], for the Wing Aerodynamic Coeficient module, the data input has 3 coordinates in Leading edge and 2 coordinates in the Trailing edge shown as Figure 19.

For the Additive Lift Coefficient Distribution Module is defined for 2 wing station, the first station in the root wing and the second station in the tip wing, and with its slope of lift curve shown as Figure 20.

The Basic Lift distribution Coefficient module is defined to 4 wing stations and their slope of the lift section regarding the angle of attack in degree angles, shown as Figure 21.

The Stall Cl coefficient module the data input has 4 wing station, 2 Reynolds Number, $\mathrm{C}_{\mathrm{lmax}}$, and length chord for each airfoil section discretized along to wing, shown as Figure 22.

For the Wing Air Coefficient Distribution module the data input is 2 wing stations, their profile drag coefficient, and their moment coefficients as shown Figure 23a. The data output shown 3 graphics the coefficients aerodynamics such as: $c_{1}, c_{d}$, and $c_{d i}$ along the wing, see Figure 23b.

Finally the ultimate module Figure 24a, the Air-loads Distribution enter CL from wing, the true velocity and others data shown in the Figure 24a, and the output data with their graphics of load along the wing shown in Figure 24b-e.


Figure 19
Sample - Wing Aerodynamic Geometry

| ( |  |  |  |
| :---: | :---: | :---: | :---: |
| Input Data |  |  |  |
| $\begin{gathered} \text { wing } \\ \text { station } \\ \frac{1}{2} \end{gathered}$ | $\text { \# } \quad \text { Wing } \begin{gathered} \text { Station } \\ 0 \\ 201 \end{gathered}$ | slope of Lift curve 0.1075 0.1075 |  |
| output Data |  |  |  |
| Element | YE | CC (LA1) | $C(L A 1)$ for $\mathrm{CL}=1.00061$ |
| 1 | 5.02500 | 91.05578 | 0.927598 |
| 2 | 15.07500 | 88.11359 | 0.952694 |
| 3 4 | 25.12500 35.17500 | 85.06548 81.90982 | 0.979851 1.009479 |
| 4 | 35.17500 45.22500 | 81.90982 78.64409 | 1.009479 1.042105 |
| 6 | 55.27500 | 76.86877 | 1.052991 |
| 7 | 65.32500 | 75.20829 | 1.059266 |
| 8 | 75.37500 | 73.42356 | 1.064104 |
| 9 | 85.42500 | 71.50690 69.44848 | 1. 1.067262 |
| 11 | 95.47500 105.52500 | 69.44848 67.23572 | 1.068433 1.067229 |
| 12 | 115.57500 | 64.85227 | 1. 063148 |
| 13 | 125.62500 | 62.27653 | 1.055531 |
| 14 | 135.67500 | 59.47916 | 1.043491 |
| 15 | 145.72500 | 56.41887 | 1.025795 |
| 16 | 155.77500 | 53.03449 | 1.000648 |
| 17 | 165.82500 175.87500 | 49.22852 44.82711 | 0.965263 0.914838 |
| 19 | 185.92500 | 39.45386 | 0.839443 |
| 20 | 195.97500 | 31.82982 | 0.7073291 |

Figure 20
Sample - Additive Lift Distribution

| Input Data |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Item w | Wing station | Angle |  |  |
| 1 | 0.000 | 5.000 |  |  |
| 2 | 46.500 | 4.577 |  |  |
| 3 | 109.279 | 4.028 |  |  |
| 4 | 201.000 | 1.900 |  |  |
| Output Data |  |  |  |  |
| Wing angle of attack for zero lift $=3.988147$ <br> Element Ref Angle alphawo cclb clb |  |  |  |  |
|  |  |  |  |  |
| 1 | 4.95429 | 0.96614 | 5.09762 | 0.05193 |
| 2 | 4.86287 | 0.87472 | 4.34847 | 0.04702 |
| 3 | 4.77144 | 0.78330 | 3.65509 | 0.04210 |
| 4 | 4.68002 | 0.69187 | 3.01748 | 0.03719 |
| 5 | 4.58860 | 0.60045 | 2.43563 | 0.03227 |
| 6 | 4.50026 | 0.51212 | 2.00943 | 0.02753 |
| 7 | 4.41238 | 0.42423 | 1.61897 | 0.02280 |
| 8 | 4.32449 | 0.33634 | 1.24742 | 0.01808 |
| 9 | 4.23660 | 0.24846 | 0.89476 | 0.01335 |
| 10 | 4.14872 | 0.16057 | 0.56099 | 0.00863 |
| 11 | 4.06083 | 0.07268 | 0.24612 | 0.00391 |
| 12 | 3.88193 | -0.10622 | -0.34827 | -0.00571 |
| 13 | 3.64876 | -0.33939 | -1.07628 | -0.01824 |
| 14 | 3.41559 | -0. 57255 | -1.75417 | -0.03077 |
| 15 | 3.18242 | -0.80572 | -2. 38192 | -0.04331 |
| 16 | 2. 94926 | -1.03889 | -2.95955 | -0.05584 |
| 17 | 2.71609 | -1. 27206 | -3.48704 | -0.06837 |
| 18 | 2.48292 | -1. 50523 | -3.96440 | -0.08091 |
| 19 | 2.24975 | -1.73839 | -4. 39162 | -0.09344 |
| 20 | 2.01658 | -1.97156 | -4.76872 | -0.10597 |
| There is no Discontinuity between Flap and Aileron |  |  |  |  |
| Element cc_7b |  | c_7b Faired |  |  |
| 1 | 5.09762 | 0.05193 |  |  |
| 2 | 4.34847 | 0.04702 |  |  |
| 3 | 3.65509 | 0.04210 |  |  |
| 4 | 3.01748 | 0.03719 |  |  |
| 5 | 2.43563 | 0.03227 |  |  |
| 6 | 2.00943 | 0.02753 |  |  |
| 7 | 1.61897 | 0.02280 |  |  |
| 8 | 1. 24742 | 0.01808 |  |  |
| 9 | 0.89476 | 0.01335 |  |  |
| 10 | 0.56099 | 0.00863 |  |  |
| 11 | 0.24612 | 0.00391 |  |  |
| 12 - | -0.34827 | -0.00571 |  |  |
| 13 - | -1.07628 | -0.01824 |  |  |
| 14 - | -1.75417 | -0.03077 |  |  |
| 15 - | -2. 38192 | -0.04331 |  |  |
| 16 - | -2.95955 | -0.05584 |  |  |
| 17 - | -3.48704 | -0.06837 |  |  |
| 18 - | -3.96440 | -0.08091 |  |  |
| 19 - | -4. 39162 | -0.09344 |  |  |
| 20 - | -4.76872 | -0.10597 |  |  |

Figure 21
Sample - Basic Lift Distribution

| Input Data |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| select wing stas, 2clmaxs \& Reinolds no. and chord |  |  |  |  |  |  |
| It | wing sta | Clmax1 | RN1 | CLmax2 |  | CHORD |
| $\frac{1}{2}$ | 46.500 | 1.460 | 3000000 300000 | 1.680 | ${ }^{90000000}$ | 101.000 |
| 3 | 109.279 | 1.480 | 300000 | 1.700 | 900000 | 62.253 |
| 4 | 201.000 | 1.500 | 3000000 | 1.740 | 9000000 | 44.000 |
| output data |  |  |  |  |  |  |
| For 70 mph  <br> item RN3 CLMAX3 <br> 1 5514282 1.562843 <br> 2 4080896 1.518539 <br> 3 3398818 1.503487 <br> 4 2402261 1.455641 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| CL max (STALL) For each element |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 15.075001 .548480 |  |  |  |  |  |  |
| $\begin{array}{ll}\text { 25.12500 } & 1.538904 \\ & 15\end{array}$ |  |  |  |  |  |  |
| 45.22500 1.519753 |  |  |  |  |  |  |
| 55.25000 1.514025 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 8 | 75.37500 | 1. 511616 |  |  |  |  |
| 95,   <br> 10 85.42500 1.509206 <br> 9.47500 1.506797  |  |  |  |  |  |  |
| $\begin{array}{lll}11 & 105.5500 \\ 12 & 1.504387\end{array}$ |  |  |  |  |  |  |
|  | $\begin{array}{lll}13 & 125.62500 & 1.494960 \\ 14 & 13.6750 & 1.49818\end{array}$ |  |  |  |  |  |
| 14 |  |  |  |  |  |  |
| $\begin{array}{lll}15 & 145.72500 & 1.484475 \\ & 15 & 15.7750\end{array}$ |  |  |  |  |  |  |
| $\begin{array}{lll}17 & 165.82500 & 1.473990 \\ 18 & 175.87500 & 1.468747\end{array}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }_{20}^{19}$ | 185.92500 195.97500 | 1.463505 1.458262 |  |  |  |  |
| wing stall CL Distribution Wing stall $\mathrm{CL}=1.420$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| ${ }_{\text {Item }}^{\text {wing }}$ stall $\underset{\mathrm{YE}}{\mathrm{CL}}=1.420 \mathrm{CL}$ |  |  |  |  |  |  |
| $\begin{array}{lll}1 \times 1 & 5.02500 & 1.359844\end{array}$ |  |  |  |  |  |  |
| $\begin{array}{ll}15.07500 \\ 25.12500 & 1.3923691\end{array}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 35.17500 1.460554 |  |  |  |  |  |  |
| $\begin{array}{ll}45.22500 \\ 55.27500 & 1.501643 \\ 1.512244\end{array}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| $65.32500 \quad 1.516367$ |  |  |  |  |  |  |
| $85.42500 \quad 1.518194$ |  |  |  |  |  |  |
| $\begin{array}{rrr}10 & 95.47500 & 1.515122 \\ 11 & 105.5500 & 1.508700\end{array}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| $13 \quad 125.62500 \quad 1.470056$ |  |  |  |  |  |  |
| $14 \quad 135.67500 \quad 1.440547$ |  |  |  |  |  |  |
| $\begin{array}{lll}15 & 145.72500 & 1.403063 \\ 16 & 155.77500 & 1.355074\end{array}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| 17 165.82500 1.292648 |  |  |  |  |  |  |
| $18 \quad 175.87500 \quad 1.209015$ |  |  |  |  |  |  |
| 19 | 185.92500 | 1.0901 |  |  |  |  |
|  | 195.97500 | 0.891 |  |  |  |  |

Figure 22
Sample - Stall Cl

| Input Data |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TAU $=0.050$ <br> select wing stations and their profile Drag coeficients |  |  |  |  |  |
| $\begin{array}{ccc}\text { Item } & \text { WS } & \text { DC } \\ \frac{1}{2} & 0.000 & 0.010 \\ 201.000 & 0.010\end{array}$ |  |  |  |  |  |
|  |  |  |  |  |  |
| select wing stations and their moment coeficients |  |  |  |  |  |
|  |  |  |  |  |  |
| $\begin{array}{lrr}1 & 0.000 & -0.030 \\ 2 & 201.000 & -0.030\end{array}$ |  |  |  |  |  |
|  |  |  |  |  |  |
| output Data |  |  |  |  |  |
| SPANWISE AERO COEFICIENT DISTRIBUTIONS FOR CL $=1.520$ |  |  |  |  |  |
| Item | CL | CDI | CPD | CD | CM |
|  | 1.46188 | 0.160288 | 0.010000 | 0.170288 | -0.030000 |
| 2 | 1.49511 | 0.153480 | 0.010000 | 0.163480 | -0.030000 |
| 3 | 1. 53148 | 0.145728 | 0.010000 | 0.155728 | -0.030000 |
| 4 | 1.57160 | 0.136802 | 0.010000 | 0.146802 | -0.030000 |
| 5 | 1.61627 | 0.126389 | 0.010000 | 0.136389 | -0.030000 |
| 6 | 1. 62807 | 0.121684 | 0.010000 | 0.131684 | -0.030000 |
| 7 | 1.63289 | 0.118263 | 0.010000 | 0.128263 | -0.030000 |
| 8 | 1.63552 | 0.115246 | 0.010000 | 0.125246 | -0.030000 |
|  | 1.63559 | 0.112723 | 0.010000 | 0.122723 | -0.030000 |
| 10 | 1.63265 | 0.110796 | 0.010000 | 0.120796 | -0.030000 |
| 11 | 1. 62610 | 0.109587 | 0.010000 | 0.119587 | -0.030000 |
| 12 | 1. 61028 | 0.107629 | 0.010000 | 0.117629 | -0.030000 |
| 13 | 1.58616 | 0.105772 | 0.010000 | 0.115772 | -0.030000 |
| 14 | 1.55533 | 0.105172 | 0.010000 | 0.115172 | -0.030000 |
| 15 | 1. 51590 | 0.106041 | 0.010000 | 0.116041 | -0.030000 |
| 16 | 1.46515 | 0.108601 | 0.010000 | 0.118601 | -0.030000 |
| 17 | 1. 39883 | 0.113053 | 0.010000 | 0.123053 | -0.030000 |
| 18 | 1. 30965 | 0.119477 | 0.010000 | 0.129477 | -0.030000 |
| 19 | 1.18251 | 0.127474 | 0.010000 | 0.137474 | -0.030000 |
| 20 | 0.96917 | 0.134099 | 0.010000 | 0.144099 | -0.030000 |
| gle from WL to wing Aero Lift line $=3.988147$ |  |  |  |  |  |
| Angle from relative wind to wing zero Lift Line $=18.9154$ |  |  |  |  |  |
| Angle from relative wind to waterline $=14.927250$$C 1($ wing $)$ |  |  |  |  |  |
|  |  |  |  |  |  |
| $\mathrm{CD}(\mathrm{wing})=0.1344$ |  |  |  |  |  |
| $\mathrm{CM}($ wing $)=-0.0300$ |  |  |  |  |  |

(a)


Figure 23
Sample - Aerodynamic Coefficients

| Input Data |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| true velocity $=117.400, \mathrm{CL}=1.520$ waterline of 25 percent from root chord $=78.500$ Dihedral angle $=6.000$ |  |  |  |  |  |  |
| Output Data |  |  |  |  |  |  |
| WS | Y | x | L | D | M |  |
| 1 | 5.025 | 71.628 | 466 | -68 | -943 |  |
| 2 | 15.075 | 74.383 | 448 | -69 | -837 |  |
| 3 | 25.125 | 77.139 | 430 | -69 | -737 |  |
| 4 | 35.175 | 79.895 | 412 | -70 | -644 |  |
| 5 | 45.225 | 82.650 | 393 | -70 | -557 |  |
| 6 | 55.275 | 83.000 | 383 | -70 | -521 |  |
| 7 | 65.325 | 83.000 | 373 | -69 | -493 |  |
| 8 | 75.375 | 83.000 | 363 | -68 | -466 |  |
| 9 | 85.425 | 83.000 | 352 | -66 | -439 |  |
| 10 | 95.475 | 83.000 | 341 | -64 | -413 |  |
| 11 | 105.525 | 83.000 | 329 | -62 | -388 |  |
| 12 | 115.575 | 83.000 | 316 | -60 | -364 |  |
| 13 | 125.625 | 83.000 | 301 | -57 | -341 |  |
| 14 | 135.675 | 83.000 | 285 | -54 | -318 |  |
| 15 | 145.725 | 83.000 | 268 | -50 | -296 |  |
| 16 | 155.775 | 83.000 | 250 | -45 | -275 |  |
| 17 | 165.825 | 83.000 | 230 | -40 | -254 |  |
| 18 | 175.875 | 83.000 | 208 | -34 | -235 |  |
| 19 | 185.925 | 83.000 | 181 | -26 | -216 |  |
| 20 | 195.975 | 83.000 | 143 | -16 | -198 |  |
| WS | $x$ | $y$ | z | Fx | FZ | 5 x |
| 20 | 83.000 | 195.975 | 99.096 | -16 | 143 | -16 |
| 19 | 83.000 | 185.925 | 98.040 | -26 | 181 | -43 |
| 18 | 83.000 | 175.875 | 96.984 | -34 | 208 | -76 |
| 17 | 83.000 | 165.825 | 95.928 | -40 | 230 | -117 |
| 16 | 83.000 | 155.775 | 94.871 | -45 | 250 | -162 |
| 15 | 83.000 | 145.725 | 93.815 | -50 | 268 | -212 |
| 14 | 83.000 | 135.675 | 92.759 | -54 | 285 | -266 |
| 13 | 83.000 | 125.625 | 91.703 | -57 | 301 | -323 |
| 12 | 83.000 | 115.575 | 90.647 | -60 | 316 | -383 |
| 11 | 83.000 | 105.525 | 89.590 | -62 | 329 | -445 |
| 10 | 83.000 | 95.475 | 88.534 | -64 | 341 | -509 |
| 9 | 83.000 | 85.425 | 87.478 | -66 | 352 | -575 |
| 8 | 83.000 | 75.375 | 86.422 | -68 | 363 | -643 |
| 7 | 83.000 | 65.325 | 85.365 | -69 | 373 | -712 |
| 6 | 83.000 | 55.275 | 84.309 | -70 | 383 | -781 |
| 5 | 82.650 | 45.225 | 83.253 | -70 | 393 | -851 |
| 4 | 79.895 | 35.175 | 82.197 | -70 | 412 | -921 |
| 3 | 77.139 | 25.125 | 81.141 | -69 | 430 | -990 |
| 2 | 74.383 | 15.075 | 80.084 | -69 | 448 | -1058 |
| 1 | 71.628 | 5.025 | 79.028 | -68 | 466 | -1126 |
| $\begin{array}{lrrr}5 z & \text { Mxx } & \text { Myy } & \text { Mzz } \\ 143 & 0 & -198 & 0\end{array}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| $323-1436-431-163$ |  |  |  |  |  |  |
| $531-4686$-711 -590 |  |  |  |  |  |  |
| 761 10022 -1046 -1358 |  |  |  |  |  |  |
| 1011 17669 -1444 -2530 |  |  |  |  |  |  |
| 1279 27829 -1911 -4158 |  |  |  |  |  |  |
| $1564-40682-2453-6287$ |  |  |  |  |  |  |
| 1864 56398 -3074 -8957 |  |  |  |  |  |  |
| 2180 75136 -3779 -12201 |  |  |  |  |  |  |
| $2509 \quad 97044-4571-16047$ |  |  |  |  |  |  |
| $2850-122259$-5455 -20519 |  |  |  |  |  |  |
| $3202-150901$-6432 -25638 |  |  |  |  |  |  |
| 3565 183083 -7506 -31421 |  |  |  |  |  |  |
| $3938-218911$-8678 -37884 |  |  |  |  |  |  |
| $4320 \quad 258487$-9951 -45036 |  |  |  |  |  |  |
| $4713 \begin{array}{llll} \\ 401907 & -12844 & -52888\end{array}$ |  |  |  |  |  |  |
| $5125 \quad 349276-27375-61443$ |  |  |  |  |  |  |
| $\begin{array}{llll}5555 & 400784 & -43208 & -70697 \\ 6004 & 456616 & -60398 & -80646\end{array}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 6470 516955 -79003 -91283 |  |  |  |  |  |  |

(a)

(b)

(c)

(d)

(e)

Figure 24
Sample - Air-load Distribution

## Conclusions

The principal propose this work, obtained the Air-loads distribution along the wing for the Schrenk method and using the Matlab program, it was satisfactory results shown as Figure 24 b-d and data output in the Figure 24a. For the compare the output data see reference [6].

As shown in the windows of this tool, it's easy to use, so that, achieve the other goal.

This tool was thinking in the class of structural design from Polytechnic University of Puerto Rico, but any student the other university or Aircraft designer pioneer can be to use with reliability their analysis.

For the future work, this tool can be expanded to tail load or fuselage analysis, also can be implemented for the Code of Federal Regulation and build to V-n diagram. In addition, this tool can be implemented for structural design, since the wing geometry drawing to obtain the structural wing.

Finally, same this tool can be development other program using other method of the approximation for obtain the load distribution in aircraft.

## REFERENCES

[1] Schrenk, O. "A Simple Approximation Method for Obtaining the Spanwise Lift Distribution", Technical Memorandums National Advisory Committee for Aeronautics No 948", Vol. 7, April 4, 1940.
[2] Federal Aviation Administration (FAA), "Advisory Circular", Airframe Guide for Certification of Part 23 Airplanes, April 30, 2007.
[3] Corke, T. C., Design of Aircraft, $1^{\text {st }}$ Edition, 2002.
[4] ANC-1(1), Spanwise Air-Load Distributions, Army-NavyCommerce Committee on Aircraft Requirements, 1938.
[5] Peery, D. J., Aircraft Structures, $1^{\text {st }}$ Republished, 2011.
[6] McMaster, H. C., "FAR 23 LOADS", Aeroscience Software, 2.02 Edition.

