
Xilinx FIR Coefficient Configuration Implemented in ROACH Architecture

Zoriel M. Salado Martínez

Master of Engineering in Electrical Engineering

Luis M. Vicente, Ph.D.

Electrical Engineering Department

Polytechnic University of Puerto Rico

Luis Quintero

Electronics Department

Arecibo Observatory

Abstract  Dynamically run time reconfigurable

FIR Filter with a control logic architecture for

Coefficient reload is designed and tested on a

Xilinx Virtex 5 FPGA ROACH board for signal

recording at the Arecibo Observatory. A filter with

fixed coefficients is used as to compare it with the

reconfigurable filter. The resulting control logic

design and the filter can be reconfigured with any

coefficient and filter type limited only by its length

(filter order) or word size.

Key Terms  CASPER (Collaboration for

Astronomy Signal Processing and Electronics

Research), Control Logic, Field Programmable

Gate Array (FPGA), Finite Impulse Response (FIR)

Filter, Reconfigurable Open Architecture

Computing Hardware (ROACH).

INTRODUCTION

FIR filters are digital filters with finite impulse

response and one of the primary types of digital

filters used in Digital Signal Processing (DSP).

FIR filters can be used with fixed coefficients or

with reconfigurable coefficients. Reconfigurable

architectures have had a huge demand in the last

decade due to its compatibility, reusability, and

performance. On the other hand, static

configurations can only be loaded before the system

synthesis.

FPGAs are field programmable gate arrays that

can be configured to perform any digital systems

implementation. Coefficient configuration allows

part of the FPGA to be reconfigured in run time

while the rest of the design continues to work

unaffected. Xilinx Virtex architectures with the aid

of System Generator simulation interfaces allow

shared memory blocks to transfer data between the

PC and FPGA that let us reconfigure the filter’s

coefficients in the design and makes it useful for a

vast amount of applications.

The FPGA used for this project is in a ROACH

architecture board developed by the Collaboration

for Astronomy Signal Processing and Electronics

Research (CASPER).

The objective of this project is to design the

control logic, which will allow coefficient reloading

to the FPGA’s FIR filter in run time. The design

tools used are the MSSGE (MATLAB, Simulink

Graphical Modeling Tool, Xilinx’s System

Generator Block set and Xilinx EDK and ISE

tools). The reconfigurable FIR filter along with the

control logic design will save time and reduce the

amount of effort needed for radio astronomy

instrumentation for coefficient changes as required.

The Arecibo Observatory provided all the software

and hardware tools used for this project.

Enlarged images are included at the end of this

paper in the Appendix section for clarity.

PROJECT BACKGROUND

The Virtex 5 FPGA processing board will be

used to record signals received by the Arecibo

Observatory Antenna. The Arecibo Observatory

currently holds a 2380MHz transmitter with a

power up to 1MW. This signal is sent to objects

within the Solar System, such as Asteroids, and the

response signal gives information about their path,

rotation, among others due to the Doppler effect.

The bandwidth caused by the object’s rotation

is not constant, but could reach up to 50Mhz. The

current system at the Arecibo Observatory records

up to 10MHz bandwidth, but with this FPGA

implementation, we are trying to achieve 50MHz.

The FIR Filter reconfiguration is needed to modify

the filter based on the desired bandwidth. The

system itself is called Digital Down Converter,

which holds the FIR Reconfigurable Filter and the

control logic design in this project.

CASPER

CASPER goal is to reduce the amount of effort

done for radio astronomy instrumentation design

through “an open-source, platform-independent

design approach that enables astronomers to

quickly and efficiently design new custom digital

backend for existing and new instrumentation.” [1]

Software

With the aid of Simulink, CASPER tools

developed complex DSP systems for radio

astronomy instrumentation design using FPGAs.

The advantages of CASPER DSP tools are that not

only they are highly configurable, but also their

extensive DSP library imported used in

collaboration with Simulink.

These tools provide a platform for

communication between scientists and engineers

due to its high level of abstraction. From CASPER

libraries a scientist can draw a high-level block

diagram for their instruments and the engineer can

add the control logic to go from a logic block

design to a functional instrument.

CASPER MSSGE blocks used in this design

include: slices, multiplexers, LFSR (Linear

Feedback Shift Register part of the Xilinx library

toolset in Simulink) and FIR filters. CASPER

libraries provided software registers and BRAMs

Block Random Access Memory) read and write

accessible through the Python scripts.

At the Arecibo Observatory one of the

computers has MSSGE and CASPER libraries; the

other computer was used to load the bitstream file

to the FPGA through a Python script and had direct

access to the ROACH board through the PowerPC

(PPC).

Hardware

The stand alone FPGA processing board used

in this project is the ROACH board with a 100MHz

internal clock. The FPGA is connected to several

peripherals and input/output interfaces. The top

sampling rate of one of the Analog to Digital

Converter (ADC) boards in dual channel is 1.5GHz,

but sampling is not done at more than 800MHz for

this project. Noise sources were generated using a

LFSR for a pseudo random input signal.

Communication from the computer to the

board is done through the PPC 440 EPx subsystem,

which is the primary command and control

mechanism for the ROACH board. Figure 1 shows

the ROACH board and Figure 2 shows the high

level block diagram for the board.

Figure 1

ROACH Board [1]

XILINX FIR FILTER

Xilinx FIR Compiler v5.0 allows to change the

coefficients via control ports. The configuration

used for the FIR filter is the Conventional single-

rate with distributed arithmetic architecture. Only

one set of coefficients, 16-bits wide, will be used

and re-written each time the user wants to reload a

new set of coefficients. The sampled signals are

only 8-bits long and generated pseudo-randomly by

a LFSR.

Coefficients for the FIR filters (reloadable and

fixed) are generated through Matlab’s fir1(n,Wn)

function, which returns a row vector containing the

n+1 coefficients of an order n lowpass, highpass,

bandpass or bandstop FIR filter. Wn is the

normalized cutoff frequency for the hamming-

window linear-phase. For the fixed coefficient

architecture, the fir1 function is written directly into

the Simulink Xilinx FIR Filter block before

Figure 2

High-level Block Diagram of the ROACH Board [1]

synthesizing the design; for reloadable coefficient

architecture, Matlab’s code generates a binary file

with the 16bit fixed point filter coefficients, which

is read into the design while the FPGA is running

with the synthesized design.

FIR with Fixed Coefficients

A FIR filter with fixed coefficients architecture

was implemented to compare against the FIR filter

with reloadable coefficients. With the ctrl software

register shown in Figure 11, we coded a Python

script to select between the input and the output

signal of the filter, took a snapshot of the selected

signal and stored it in a BRAM inside the snap

block. There is no control logic added to the FIR

filter with fixed coefficients, rather than a simple

software register read/write in python.

Figure 11 shows the FIR filter architecture with

fixed coefficients.

The portion of the Python code in Figure 3 is

used as an example to show how the bitstream file

(CONFIG_FILE variable in progdev routine) is

loaded into the FPGA, the input/output signals snap

selection and the plot command to show the signals

and filter behavior for the FIR filter with fixed

coefficients.

Figure 3

Python Code for Fixed Coefficients FIR Filter Design

Figure 4 shows the frequency response of the

input X(ω), the output Y(ω) and the calculated filter

response H(ω) = Y(ω)/X(ω). All the Fast Fourier

Transform (FFT) plots in this paper are made from

0 to Fs (sampling frequency), and frequency

responses are symmetric with respect to

Fs/2=50MHz (Nyquist).

Figure 4

Fixed Coefficients Lowpass FIR filter - Spectrum. Sampling

Frequency Fs=100MHz. The cutoff frequency of this filter is

(Fs/2)*0.75=37.5MHz (0.75 normalized).

FIR with reloadable coefficients

Simulink yellow blocks (shared memory) in

the design can be read/written directly from/to the

FPGA through Python. These yellow blocks for the

FIR with reloadable coefficients architecture

include: two software registers (coef_load and

coef_len) and a BRAM (coef_mem). Coef_len

determines the amount of coefficients to be loaded

into the coef_mem BRAM, all 32bit wide and

coef_ld tells when to transfer the coefficients from

coef_mem to the filter. Input and output signals of

the filter are snapped with the snap block and

plotted.

Figures 5, 6 and 7 show frequency responses

for low-pass, high-pass and band-pass designs of

the reconfigurable filter, respectively.

 The portion of the Python code in Figure 8 is

used as an example to show how the bitstream file

(CONFIG_FILE) is loaded into the FPGA,

Matlab’s binary file (filter coefficients in

coef_40_60.bin) read, the input/output signals snap

selection and the plot command for the input,

output, and calculated frequency responses.

Figure 5

Reloadable Coefficients Lowpass FIR filter - Spectrum.

Sampling Frequency Fs = 100MHz. The cutoff frequency of

this filter is (Fs/2)*0.25 = 12.5MHz (0.25 normalized).

Figure 6

Reloadable Coefficients Highpass FIR filter - Spectrum.

Sampling Frequency Fs = 100MHz. The cutoff frequency of

this filter is (Fs/2)*0.50 = 25MHz (0.50 normalized).

Figure 7

Reloadable Coefficients Bandpass FIR filter - Spectrum.

Sampling Frequency Fs = 100MHz. The cutoff frequency of

this filter is (Fs/2)*[0.40 0.60] = [20 30] MHz (0.40-0.60

normalized).

For this example in particular, the filter

coefficients are for the band-pass FIR filter with

normalized cut of frequencies between 0.40 and

0.60 (20MHz and 30MHz respectively).

Figure 8

Python Code for Reloadable Coefficients FIR Filter Design

Control Logic design flow

The control logic design subsystem is fed with

the coef_ld bit, which is passed to the coef_mem

with a delay in order to be synchronized with the

rest of the signals. Based on the coef_len, the

coef_we will be high while coefficients are being

transferred from the coef_mem to the filter.

Figure 13 shows the control logic block design

and Figure 14 the timing diagram for the FIR filter

coefficient load from the BRAM coef_mem.

Python code

The python code for both, the filter with fixed

and reloadable coefficients starts with the library

imports and the bitstream file load (synthesis file

generated by Simulink).

For the filter with fixed coefficients, the

coefficients are loaded when the FPGA, as well as

the coefficient length (this information is included

in the bitstream file loaded into the FPGA). In

Python we do a fpga.write_int function call to write

the ctrl software register and fill the snap, see

Figure 11.

For the filter with reloadable coefficients, we

open Matlab’s binary file with the set of

coefficients. First the coefficients are stored in the

coef_mem BRAM starting at the first address

location by using the fpga.write function call. The

coefficient load from the BRAM to the filter is

done by writing the coef_len and coef_ld software

registers based on Xilinx’s timing diagram in the

datasheet [2]. The registers are 32-bit wide when

they exit the BRAM, but are truncated to 16bits for

the filter (the FIR filter could hold the whole 32-

bits but requirements for this design specified a 16-

bits wide coefficients). The coefficients are loaded

one by one triggered by the coef_ld signal while the

FPGA is turned on. Once all the coefficients have

been loaded, the coef_ld bit is cleared. Finally, the

snap of the filter’s input and output is captured.

With the input x(n) and output y(n) stored in

both snap BRAMs, we can take the FFT (Fast

Fourier Transform) of the inputs and the outputs to

go from time domain to the frequency domain

(MHz). Now, we can divide the output Y(ω) by the

input X(ω), and obtain the filter behavior as shown

in Figure 9. Filter performances for the FIR with

fixed coefficients and the FIR with reloadable

coefficients are compared in the plot shown in

Figure 10. Since the snap for both designs are not

begin captured at the same time, we will expect

some variations, but H(ω) for both filters should be

almost the same.

Figure 9

Time Domain to Frequency Domain Change and Filter

Behavior Output Diagram [3]

Figure 10

Filters with Fixed and Reloadable Coefficients Behavior

Figure 11

Fixed Coefficients FIR Filter Design

Figure 12

FIR Filter with Reloadable Coefficients, Memory Transfer and Control Logic Subsystem

Figure 13

Control Logic Subsystem Design

Figure 14

Coefficient Reload Timing for Control Logic Design

CONCLUSION AND FUTURE WORK

Two FIR filter designs for a Virtex 5 FPGA

were analyzed. Coefficients for both FIR filters

were generated using Matlab’s fir1 function. The

first filter had its coefficients defined by the time

the synthesis to the FPGA was loaded; on the other

hand, the reloadable FIR filter loaded its

coefficients while the FPGA was on using an

imported Matlab’s bit file. Having the flexibility of

loading the coefficients without reloading the entire

FPGA saves time and allows the scientists to use a

wide range of filter designs for different

bandwidths with the same bitstream configuration

file.

Having this said, the scientist will not have to

add the coefficients and synthesize the design each

time they want to filter different input signals.

Both filter behaviors were tested and it is

shown that they have almost the same behavior,

which proves that the coefficient reloading as well

as the timing between the BRAM data transfer and

the filter, worked successfully. The results show

that the design is capable of working with any filter

type: bandpass, lowpass and highpass; also for any

cutoff frequency value.

As a future work, we can compare resource

utilization in the FPGA for different parameters

such as filter order and coefficient width; study the

effects of signal output truncation of the filter, from

full precision to a lower bit width; improve the

LFSR-pseudo random noise generated internally at

the FPGA in order to get cleaner filter response;

test the filter with real signals coming from ADCs

and external noise sources; and synthesize the

design at higher FPGA clock rates, i.e. 200MHz,

and see if it meets timing constraints.

ACKNOWLEDGEMENT

I would like to thank the Arecibo Observatory

staff, in particular Sixto Gonzalez who was the first

contact person and initial link to the Electronics

Department. I would also like to thank Melissa

Rivera for contacting the Arecibo Observatory for

this research project, Osvaldo Mangual for the

brainstorming ideas, Sharissa Kamer for

understanding each time I had to work outside

regular working hours, my partner Michelle Flores

for all her support throughout my Masters Degree

and to Professor Luis Vicente for supporting this

project.

REFERENCES

[1] Berkley University, “CASPER”, CASPER Group –

Collaboration for Astronomy Signal Processing and

Electronics Research, [Online], April 2013. Retrieved

from: https://casper.berkeley.edu.

[2] Xilinx, “IP LogiCORE FIR Compiler v5.0”, Xilinx, Inc.

[Online], March 2011. Retrieved from:

http://www.xilinx.com/support/documentation/ip_documen

tation/fir_compiler_ds534.pdf.

[3] Hamilton Kibbe, “Finite Impulse Response Filters Using

Apple’s Accelerate Framework – Part III”, HAMILTON

KIBBE, [Online], April 2014. Retrieved from:

http://hamiltonkib.be/finite-impulse-response-filters-using-

apples-accelerate-framework-part-iii/.

