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Abstract  Dynamically run time reconfigurable 

FIR Filter with a control logic architecture for 

Coefficient reload is designed and tested on a 

Xilinx Virtex 5 FPGA ROACH board for signal 

recording at the Arecibo Observatory.  A filter with 

fixed coefficients is used as to compare it with the 

reconfigurable filter.  The resulting control logic 

design and the filter can be reconfigured with any 

coefficient and filter type limited only by its length 

(filter order) or word size.  

Key Terms  CASPER (Collaboration for 

Astronomy Signal Processing and Electronics 

Research), Control Logic, Field Programmable 

Gate Array (FPGA), Finite Impulse Response (FIR) 

Filter, Reconfigurable Open Architecture 

Computing Hardware (ROACH). 

INTRODUCTION 

FIR filters are digital filters with finite impulse 

response and one of the primary types of digital 

filters used in Digital Signal Processing (DSP).  

FIR filters can be used with fixed coefficients or 

with reconfigurable coefficients.  Reconfigurable 

architectures have had a huge demand in the last 

decade due to its compatibility, reusability, and 

performance.  On the other hand, static 

configurations can only be loaded before the system 

synthesis.   

FPGAs are field programmable gate arrays that 

can be configured to perform any digital systems 

implementation.  Coefficient configuration allows 

part of the FPGA to be reconfigured in run time 

while the rest of the design continues to work 

unaffected.  Xilinx Virtex architectures with the aid 

of System Generator simulation interfaces allow 

shared memory blocks to transfer data between the 

PC and FPGA that let us reconfigure the filter’s 

coefficients in the design and makes it useful for a 

vast amount of applications.  

The FPGA used for this project is in a ROACH 

architecture board developed by the Collaboration 

for Astronomy Signal Processing and Electronics 

Research (CASPER).  

The objective of this project is to design the 

control logic, which will allow coefficient reloading 

to the FPGA’s FIR filter in run time.  The design 

tools used are the MSSGE (MATLAB, Simulink 

Graphical Modeling Tool, Xilinx’s System 

Generator Block set and Xilinx EDK and ISE 

tools).  The reconfigurable FIR filter along with the 

control logic design will save time and reduce the 

amount of effort needed for radio astronomy 

instrumentation for coefficient changes as required.  

The Arecibo Observatory provided all the software 

and hardware tools used for this project. 

Enlarged images are included at the end of this 

paper in the Appendix section for clarity.   

PROJECT BACKGROUND 

The Virtex 5 FPGA processing board will be 

used to record signals received by the Arecibo 

Observatory Antenna.  The Arecibo Observatory 

currently holds a 2380MHz transmitter with a 

power up to 1MW.  This signal is sent to objects 

within the Solar System, such as Asteroids, and the 

response signal gives information about their path, 

rotation, among others due to the Doppler effect.  

The bandwidth caused by the object’s rotation 

is not constant, but could reach up to 50Mhz.  The 

current system at the Arecibo Observatory records 

up to 10MHz bandwidth, but with this FPGA 

implementation, we are trying to achieve 50MHz.  

The FIR Filter reconfiguration is needed to modify 

the filter based on the desired bandwidth.  The 

system itself is called Digital Down Converter, 

which holds the FIR Reconfigurable Filter and the 

control logic design in this project. 



CASPER 

CASPER goal is to reduce the amount of effort 

done for radio astronomy instrumentation design 

through “an open-source, platform-independent 

design approach that enables astronomers to 

quickly and efficiently design new custom digital 

backend for existing and new instrumentation.” [1]  

Software 

With the aid of Simulink, CASPER tools 

developed complex DSP systems for radio 

astronomy instrumentation design using FPGAs.  

The advantages of CASPER DSP tools are that not 

only they are highly configurable, but also their 

extensive DSP library imported used in 

collaboration with Simulink. 

These tools provide a platform for 

communication between scientists and engineers 

due to its high level of abstraction.  From CASPER 

libraries a scientist can draw a high-level block 

diagram for their instruments and the engineer can 

add the control logic to go from a logic block 

design to a functional instrument.  

CASPER MSSGE blocks used in this design 

include: slices, multiplexers, LFSR (Linear 

Feedback Shift Register part of the Xilinx library 

toolset in Simulink) and FIR filters.   CASPER 

libraries provided software registers and BRAMs 

Block Random Access Memory) read and write 

accessible through the Python scripts. 

At the Arecibo Observatory one of the 

computers has MSSGE and CASPER libraries; the 

other computer was used to load the bitstream file 

to the FPGA through a Python script and had direct 

access to the ROACH board through the PowerPC 

(PPC).  

Hardware 

The stand alone FPGA processing board used 

in this project is the ROACH board with a 100MHz 

internal clock.  The FPGA is connected to several 

peripherals and input/output interfaces.  The top 

sampling rate of one of the Analog to Digital 

Converter (ADC) boards in dual channel is 1.5GHz, 

but sampling is not done at more than 800MHz for 

this project. Noise sources were generated using a 

LFSR for a pseudo random input signal. 

Communication from the computer to the 

board is done through the PPC 440 EPx subsystem, 

which is the primary command and control 

mechanism for the ROACH board.  Figure 1 shows 

the ROACH board and Figure 2 shows the high 

level block diagram for the board. 

 
Figure 1  

ROACH Board [1] 

XILINX FIR FILTER 

Xilinx FIR Compiler v5.0 allows to change the 

coefficients via control ports.  The configuration 

used for the FIR filter is the Conventional single-

rate with distributed arithmetic architecture.  Only 

one set of coefficients, 16-bits wide, will be used 

and re-written each time the user wants to reload a 

new set of coefficients.  The sampled signals are 

only 8-bits long and generated pseudo-randomly by 

a LFSR. 

Coefficients for the FIR filters (reloadable and 

fixed) are generated through Matlab’s fir1(n,Wn) 

function, which returns a row vector containing the 

n+1 coefficients of an order n lowpass, highpass, 

bandpass or bandstop FIR filter.  Wn is the 

normalized cutoff frequency for the hamming-

window linear-phase.  For the fixed coefficient 

architecture, the fir1 function is written directly into 

the Simulink Xilinx FIR Filter block before 



Figure 2 

High-level Block Diagram of the ROACH Board [1]

synthesizing the design; for reloadable coefficient 

architecture, Matlab’s code generates a binary file 

with the 16bit fixed point filter coefficients, which 

is read into the design while the FPGA is running 

with the synthesized design. 

FIR with Fixed Coefficients 

A FIR filter with fixed coefficients architecture 

was implemented to compare against the FIR filter 

with reloadable coefficients. With the ctrl software 

register shown in Figure 11, we coded a Python 

script to select between the input and the output 

signal of the filter, took a snapshot of the selected 

signal and stored it in a BRAM inside the snap 

block.  There is no control logic added to the FIR 

filter with fixed coefficients, rather than a simple 

software register read/write in python. 

Figure 11 shows the FIR filter architecture with 

fixed coefficients. 

The portion of the Python code in Figure 3 is 

used as an example to show how the bitstream file 

(CONFIG_FILE variable in progdev routine) is 

loaded into the FPGA, the input/output signals snap 

selection and the plot command to show the signals 

and filter behavior for the FIR filter with fixed 

coefficients.  

 
Figure 3  

Python Code for Fixed Coefficients FIR Filter Design 



Figure 4 shows the frequency response of the 

input X(ω), the output Y(ω) and the calculated filter 

response H(ω) = Y(ω)/X(ω). All the Fast Fourier 

Transform (FFT) plots in this paper are made from 

0 to Fs (sampling frequency), and frequency 

responses are symmetric with respect to 

Fs/2=50MHz (Nyquist). 

 
Figure 4  

Fixed Coefficients Lowpass FIR filter - Spectrum.  Sampling 

Frequency Fs=100MHz.  The cutoff frequency of this filter is 

(Fs/2)*0.75=37.5MHz (0.75 normalized). 

FIR with reloadable coefficients 

Simulink yellow blocks (shared memory) in 

the design can be read/written directly from/to the 

FPGA through Python.  These yellow blocks for the 

FIR with reloadable coefficients architecture 

include:  two software registers (coef_load and 

coef_len) and a BRAM (coef_mem).  Coef_len 

determines the amount of coefficients to be loaded 

into the coef_mem BRAM, all 32bit wide and 

coef_ld tells when to transfer the coefficients from 

coef_mem to the filter. Input and output signals of 

the filter are snapped with the snap block and 

plotted. 

Figures 5, 6 and 7 show frequency responses 

for low-pass, high-pass and band-pass designs of 

the reconfigurable filter, respectively. 

 The portion of the Python code in Figure 8 is 

used as an example to show how the bitstream file 

(CONFIG_FILE) is loaded into the FPGA, 

Matlab’s binary file (filter coefficients in 

coef_40_60.bin) read, the input/output signals snap 

selection and the plot command for the input, 

output, and calculated frequency responses.  

 

Figure 5  

Reloadable Coefficients Lowpass FIR filter - Spectrum.  

Sampling Frequency Fs = 100MHz.   The cutoff frequency of 

this filter is (Fs/2)*0.25 = 12.5MHz (0.25 normalized). 

 

Figure 6  

Reloadable Coefficients Highpass FIR filter - Spectrum.  

Sampling Frequency Fs = 100MHz.  The cutoff frequency of 

this filter is (Fs/2)*0.50 = 25MHz (0.50 normalized). 

 
Figure 7 

Reloadable Coefficients Bandpass FIR filter - Spectrum. 

Sampling Frequency Fs = 100MHz.  The cutoff frequency of 

this filter is (Fs/2)*[0.40 0.60] = [20 30] MHz (0.40-0.60 

normalized). 



For this example in particular, the filter 

coefficients are for the band-pass FIR filter with 

normalized cut of frequencies between 0.40 and 

0.60 (20MHz and 30MHz respectively). 

 
Figure 8 

Python Code for Reloadable Coefficients FIR Filter Design 

Control Logic design flow 

The control logic design subsystem is fed with 

the coef_ld bit, which is passed to the coef_mem 

with a delay in order to be synchronized with the 

rest of the signals.  Based on the coef_len, the 

coef_we will be high while coefficients are being 

transferred from the coef_mem to the filter.  

Figure 13 shows the control logic block design 

and Figure 14 the timing diagram for the FIR filter 

coefficient load from the BRAM coef_mem.   

Python code 

The python code for both, the filter with fixed 

and reloadable coefficients starts with the library 

imports and the bitstream file load (synthesis file 

generated by Simulink).   

For the filter with fixed coefficients, the 

coefficients are loaded when the FPGA, as well as 

the coefficient length (this information is included 

in the bitstream file loaded into the FPGA).  In 

Python we do a fpga.write_int function call to write 

the ctrl software register and fill the snap, see 

Figure 11. 

For the filter with reloadable coefficients, we 

open Matlab’s binary file with the set of 

coefficients. First the coefficients are stored in the 

coef_mem BRAM starting at the first address 

location by using the fpga.write function call.  The 

coefficient load from the BRAM to the filter is 

done by writing the coef_len and coef_ld software 

registers based on Xilinx’s timing diagram in the 

datasheet [2]. The registers are 32-bit wide when 

they exit the BRAM, but are truncated to 16bits for 

the filter (the FIR filter could hold the whole 32-

bits but requirements for this design specified a 16-

bits wide coefficients).  The coefficients are loaded 

one by one triggered by the coef_ld signal while the 

FPGA is turned on.  Once all the coefficients have 

been loaded, the coef_ld bit is cleared.  Finally, the 

snap of the filter’s input and output is captured.     

With the input x(n) and output y(n) stored in 

both snap BRAMs, we can take the FFT (Fast 

Fourier Transform) of the inputs and the outputs to 

go from time domain to the frequency domain 

(MHz).  Now, we can divide the output Y(ω) by the 

input X(ω), and obtain the filter behavior as shown 

in Figure 9.  Filter performances for the FIR with 

fixed coefficients and the FIR with reloadable 

coefficients are compared in the plot shown in 

Figure 10.  Since the snap for both designs are not 

begin captured at the same time, we will expect 

some variations, but H(ω) for both filters should be 

almost the same.   

 
Figure 9  

Time Domain to Frequency Domain Change and Filter 

Behavior Output Diagram [3] 



Figure 10 

Filters with Fixed and Reloadable Coefficients Behavior 

 
Figure 11  

Fixed Coefficients FIR Filter Design 

 

Figure 12  

FIR Filter with Reloadable Coefficients, Memory Transfer and Control Logic Subsystem 



 
Figure 13  

Control Logic Subsystem Design 

 
Figure 14  

Coefficient Reload Timing for Control Logic Design 

CONCLUSION AND FUTURE WORK 

Two FIR filter designs for a Virtex 5 FPGA 

were analyzed.  Coefficients for both FIR filters 

were generated using Matlab’s fir1 function.  The 

first filter had its coefficients defined by the time 

the synthesis to the FPGA was loaded; on the other 

hand, the reloadable FIR filter loaded its 

coefficients while the FPGA was on using an 

imported Matlab’s bit file.  Having the flexibility of 

loading the coefficients without reloading the entire 

FPGA saves time and allows the scientists to use a 

wide range of filter designs for different 

bandwidths with the same bitstream configuration 

file.    

Having this said, the scientist will not have to 

add the coefficients and synthesize the design each 

time they want to filter different input signals.   

Both filter behaviors were tested and it is 

shown that they have almost the same behavior, 

which proves that the coefficient reloading as well 

as the timing between the BRAM data transfer and 

the filter, worked successfully.  The results show 

that the design is capable of working with any filter 

type: bandpass, lowpass and highpass; also for any 

cutoff frequency value.   

As a future work, we can compare resource 

utilization in the FPGA for different parameters 

such as filter order and coefficient width; study the 

effects of signal output truncation of the filter, from 

full precision to a lower bit width; improve the 

LFSR-pseudo random noise generated internally at 

the FPGA in order to get cleaner filter response; 

test the filter with real signals coming from ADCs 

and external noise sources; and synthesize the 

design at higher FPGA clock rates, i.e. 200MHz, 

and see if it meets timing constraints.  
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