
LittleFe: GalaxSee Image Processing at Polytechnic University of Puerto Rico

Ricardo J. Negrón Fontanez

Master of Engineering in Electrical Engineering

Dr. Luis Vicente

Electrical & Computer Engineering & Computer Science Department

Polytechnic University of Puerto Rico

Abstract The purpose of this project is to

manage images in the current LittleFe project in

the GalaxSee program. This program is installed in

a Linux base Bootable Cluster CD version 3.3.1.

This Linux version doesn’t contain any library that

is capable to manage and process external images,

but it’s able to manage pixels and pixels colors by

the Xlib library, available in this Linux version. By

programing a class that is able to open a bitmap

file in a byte format, then by removing the image

header we obtain all the bytes that contain the

image colors. These bytes where divided in group

of three, each group contained 24 bits. This 24 bits

reflects the Red, Green and Blue pixel color values

also known as the RGB triplet. Each channel

represents an 8 bit value that is used to provide the

intensity of each color channel. By reading the

bitmap file in a interval of 24 bits we manage to

read each pixel color. By storing all the color

values into a three dimensional array variable we

were able to include the bitmap file pixels in the

GlaxSee program and the bitmap file pixel colors.

Key Terms C++, Image Processing,

Libraries, UNIX.

WHAT IS LITTLEFE?

LittleFe is a portable multi-node computational

cluster that supports shared memory parallelism

(OpenMP), distributed memory parallelism (MPI)

and GPGPU parallelism (CUDA) designed for

educational purposes associated with high

performance computing (HPC) and computational

science teaching key concepts such as speedup

efficiency, and load balancing being much

effectively done on a parallel platform. [7]

WHAT IS GALAXSEE?

GalaxSee is a program that is installed in a

BCCD Linux environment that simulates a galaxy

using Newtonian law of physics. It can manage any

amount of stars; manage the mass of each star and

the number of years that will go through before

exiting automatically the program. [3]

GALAXSEE PHYSICS

One of the grand challenge problems in

astronomy is the evolution and structure of the

universe and galaxies. Galaxies often have a spiral

structure that is difficult to explain. Space is not

occupied by a homogeneous fluid, but by discrete

particles that interact through gravity over long

ranges. [1]

This is often modeled as discrete bodies

interacting through gravity. The gravitational force

is given by:

Fg = G M1M2/D2, (1)

Where M1 and M2 are two objects masses and

D is the distance between them. The acceleration of

an object is given by the sum of the forces acting on

that object divided by its mass:

a = ΣF/M (2)

If you know the acceleration of each mass, you

can calculate the change in velocity

a = Δv/Δt (3)

 If you know the velocity, you can calculate the

change in position

v = Δx/Δt (4)

The algorithm can be loosely described

as NEW = OLD + CHANGE. This is applied to

each particle. To apply this to each particle, you

need to know the acceleration, but the acceleration

is determined by the sum of all of the forces.

What this means is that the more objects you

have, the more forces you need to calculate. What’s

worse, every object needs to know about every

other object. [1]

Figure 1

N Bodies Forces

GALAXSEE CODE ORIGINAL STATE

The GalaxSee code is a simple implementation

of parallelism. Since most of the time in a given N-

Body model is spent calculating the forces, we only

parallelize that part of the code. “Client” programs

that just calculate accelerations are fed every

particle’s information, and a list of which particles

that client should compute. A “server” runs the

main program, and sends out requests and collects

results during the force calculation. [1]

You could think of the total running time in the

following way:

 A: It takes some time to send out information

on N particles to P-1 processors each of S time

steps.

 B: It takes some time for each processor to

calculate N/P * N interactions each of every S

time steps.

As long as you run the model for enough time

steps that not much time is spent “setting up” the

program, a reasonable model for how long the

GalaxSee program will take to run on a given

cluster is

Time = A*N*(P-1) + B*N*N/P (5)

RUNNING GALAXSEE PROGRAM IN

ORIGINAL STATE

To run the program, first move into the

GalaxSee directory by executing cd ~/GalaxSee.

Next the executable needs to be "made" by

running make. This will create the

executable GalaxSee.

Next we need to copy this executable to all the

nodes that will be running it. To do so first in your

terminal run bccd-allowall, and then run bccd-

snarfhosts.

To run the program on one node of your

cluster, enter the following command

mpirun –np 1 –machinefile ~/machines-openmpi

./GalaxSee.cxx-mpi 500 400 1000.0 (6)

For running it on multiple processors, make the

appropriate changes to the number of processors (-

np), follow the instruction above. [1]

OBJECTIVE

Analyze the current program, study its

behavior and how it works. Then identify the code

part that manages the pixel mass placements and

improve the code by including any necessary

libraries, classes or functions.

Currently the program shows each mass as a

pixel and displays it in a window as it appears in

the following image:

Figure 2

GalaxSee Masses Display

The following images are going to be displayed

in substitution of the pixels demonstrated on the

previous image.

Figure 3

Planets

RESEARCH RESULTS

During the analysis of the GalaxSee

programmed code I found that the program doesn’t

manages images but is able to manage pixels and

their colors using the X11/Xlib library that is

included in the BCCD Operating System as many

other libraries.

In the process on verifying if the BCCD OS

contained any pre-installed library that could

manage a image format file, we found that it didn’t

had at the moment a known library that could

manage a image file. Having this constraint we

pursue to find and install a library that could ease

our objective. [4]

In this search we found the following libraries:

libPNG, JPEGlib, Magik++, IMGlib2,

EasyBMP. The libPNG and Magik++ were

installed successfully but it didn’t compile correctly

given an error of compatibility with the Math

library being only compatible with Intel compilers.

The JPEGlib wasn’t able to install the successfully

in the lib directory. The IMGlib2++ didn’t

contained a configure file required to perform the

make file that is needed to perform the installation

of the library. Finally we installed the EasyBMP

successful but wasn’t able to execute the library

codes correctly because it was programmed to

manage Windows bitmap images, generating for

this reason errors during its usage.

By having problems in the installation of the

previously mentioned libraries we directed our

search on managing the image files in a native

form.

BITMAP FILE FORMAT

In our research on selecting an adequate image

file format we selected the Bitmap file format. This

format is capable of storing 2D digital images of

arbitrary width, height, resolution, color depths and

color profiles.

The bitmap image file consists of a fixed size

structure known as a header and a variable-size

structure appearing in a predetermined sequence.

Table 1

Bitmap File Composed Structure

Structur

e Name

Optiona

l

Size Purpose Comments

Bitma

p File

Header

No 14 Bytes To store

general

informatio

n about the

Bitmap

image File

Not needed

after the

file is

loaded in

memory

DIB

Header

No Fixed-size

 (however 7

different

versions

exist)

To store

detailed

informatio

n about the

bitmap

image and

define the

pixel

format

Immediatel

y follows

the Bitmap

File

Header

Extra

bit

masks

Yes 3 or 4

DWORDs[

6]

 (12 or 16

Bytes)

To store

detailed

informatio

n about the

bitmap

image and

define the

pixel

format

Immediatel

y follows

the Bitmap

File

Header

Color

Table

Semi-

option

al

Variable-

size

To define

colors used

by the

bitmap

image data

(Pixel

Array)

Mandatory

for color

depths <=

8

Gap1 Yes Variable-

size

Structure

alignment

An artifact

of the File

Offset to

PixelArray

in the

Bitmap

File

Header

Pixel

Array

No Variable-

size

To define

the actual

values of

the pixels

The pixel

format is

defined by

the DIB

Header or

Extra bit

masks.

Each row

in the Pixel

Array is

padded to

a multiple

of 4 bytes

in size

Gap2 Yes Variable-

size

Structure

alignment

An artifact

of the ICC

Profile

Data offset

field in the

DIB

Header

ICC

Color

Profile

Yes Variable-

size

To define

the color

profile for

color

manageme

nt

Can also

contain a

path to an

external

file

containing

the color

profile.

When

loaded in

memory as

"non-

packed

DIB", it is

located

between

the color

table and

gap1.

BITMAP FILE HEADER

This block of bytes are in the start of the file

and are used to identify the file. The GalaxSee

program proceed to first open the image file and

verify if its headers corresponds to a BMP file of 24

bits. The data that should be obtain on the header

would be of two bytes, containing the characters

‘B’ on the first byte and in the second byte the

character ‘M’. All of the integer values are stored in

little-endian format. [6]

DIB HEADER (BITMAP INFORMATION

HEADER)

This block of bytes tells the application

detailed information about the image, which will be

used to display the image in the screen. The block

also matches the header used internally by

Windows and OS/2 and has several different

variants. All of them contain a dword field,

specifying their size, so that an application can

easily determine which header is used in the image.

The GalaxSee program ignores these bytes

because there are not needed for displaying the

image pixels colors in the BCCD window.

COLOR TABLE

The color table is contained after the BMP file

header, the DIB header and after an optional three

red, green and blue bitmasks if the

BITMAPINFOHEADER header with

BI_BITFIELDS option is being used. The number

of entries in the color table is 2n or a smaller

number specified in the header.

The color table is a block of bytes listing the

colors used by the image. Each pixel in an indexed

color image is described by a number of bits (1, 4

or 8) which is an index of a single color described

by the table. The purpose of the color table in

indexed color bitmaps is to inform the application

about the actual color that each of these index

values corresponds to. The purpose of the color

table in a non-indexed bitmaps is to list the colors

used by the bitmap for the purposes of optimization

on devices with limited color display capability and

to facilitate future conversion to different pixel

formats. [6]

The colors in the color table are specified in the

4-byte per entry known as RGBA32 format. The

color table used with OS/2

BITMAPCOREHEADER uses the 3-byte per entry

known as RGB24 format. Knowing this, we were

able to identify the correct Bitmap image format

needed to obtain only the image pixel colors. The

RGB24 format is the correct bitmap image format

that is needed to obtain the pixel color bites. The

first 8 bites will store the Red color values, the next

8 bites will store the Green color values and the last

8 bites will store the Blue color values, each color

values will contain a range from 0 to 255 color

value (RED, GREEN,BLUE), (0 to 255, 0 to 255, 0

to 255). [6]

PIXEL STORAGE

The bits representing the bitmap pixels are

packed in rows. The size of each row is rounded up

to a multiple of 4 bytes by padding. For images

with height > 1, multiple padded rows are stored

consecutively, forming a Pixel Array. The total

number of bytes necessary to store one row of

pixels can be calculated as:

(6)

The total amount of bytes necessary to store an

array of pixels in an n bits per pixel (bpp) image,

width 2n colors, can be calculated by accounting for

the effect of rounding up the size of each row to a

multiple of a 4 bytes, as follows:

 (7)

PIXEL ARRAY

Is a block of 32-bit DWORD that describe the

image pixel by pixel. This pixels are stored upside

down with respect to normal image raster scan

order, starting in the lower left corner, going from

left to right, and then row by row from the bottom,

when the Image Height value is negative. [6]

INCLUDING BMP FILES IN GALAXSEE

We previously explained how a bitmap image

files work. But we need to first include the

following libraries to complete this task:

 Sstream: Is a part of the C++ Standard Library

that contains a header file that provides

templates and types that enable interoperation

between stream buffer and string objects. [9]

 String.h: Is a contiguous sequence of code

units terminated by the first zero code. There

are two types of strings: strings, which is

sometimes called byte string which uses the

type chars as code units and wide string which

uses the type wchar_t as code units. [8]

 Cmath: Provides access to mathematical

functions for complex numbers. The functions

in this module accept integers, floating-point

numbers or complex numbers as arguments. [5]

Then we proceed to create a structure that will

contain the color table of each planet images and

their image sizes. The structure is called Planet and

it contains:

 Char *** HEXcolorArray: 3 dimensional

char that will collect the hexadecimal color

values of each pixel.

 Char ** XColor: 2 dimencional char that will

collect a PAM tuple type color value used in

the GalaxSee program to identify the color

value of the pixel.

 Int width: It will store the image width in an

integer.

 Int height: It will store the image width in an

integer.

Table 2

PAM Tuple Types

TUPLTYPU MAXVAL DEPTH Comments

BLACKANDWHITE 1 1 Special case of

GRAYSCALE

GRAYSCALE 2…65535 1 2 bytes per

pixel for

MAXVAL >

255

RGB 1…65535 3 6 bytes per

pixel for

MAXVAL >

255

BLACKANDWHITE_ALPHA 1 2 2 bytes per

pixel for

MAXVAL >

255

GRAYSCALE_ALPHA 2…65535 2 4 byes per

pixel for

MAXVAL >

255

RGB_ALPHA 1…65535 4 8 bytes per

pixel for

MAXVAL >

255

We declared 10 variables with the previously

mentioned structure called “Planet”. The created

Planet variables are: Earth, Jupiter, Neptun, Uranus,

Mars, Mercury, Pluto, Saturn, Venus and Planetoid.

Each Planet will open their BMP file by a standard

ifstream that are being stored at the following

directory: /bccd/home/bccd/GlaxSee/Imagenes/.

When the Planet image is opened then we verify if

the header is from a BMP file by verifying if the

image type is of 19778 and if its bits counts to 24, if

the image contains this bits counts and the correct

header then we proceed to read each 3bytes and

convert them from 24 bits to a Hexadecimal value

by calling the function GetHEXvalue and store

them in the HEXcolorArray that is in each Planet

Structure. [2]

Figure 4

GetHEXvalue Function

Now that we acquired each pixel color in a

Hexadecimal value we proceed to send those pixel

colors to the bccd window by first calling the

XParseColor() function. The XParseColor()

function looks up the string name of color with

respect to the screen associated with the specified

color map. It returns the exact color value. This

color value is stored in the Planet structure and

used in the XAllocColor() function.

Each Planet image contains pixel colors that

are not going to be place in the bccd Windows. The

pixels that are not going to be used are the

background of each image. To remove the

background color we select a unique color as the

background. The unique color has a hexadecimal

value of “E0C000”. This means that each pixel

color is verified and if it contains the hexadecimal

value of “E0C000” it would not be placed in the

bccd Window.

Figure 5

HEXAD Function

The XAllocColor() function allocates a read-

only color map entry corresponding to the closest

RGB value supported by the hardware. It returns

the pixel value of the color closest to the specified

RGB elements supported by the hardware and

returns the RGB value actually used. This value is

stored in the Planet structure in the 2 dimensional

XColor array called ColoresArray. [2]

Figure 6

Store Supported RGB Colors on Planet Structure

To show the pixel value we need to call the

XSetForeground() function to specify the

foreground we want to set for the specified GC. A

GC defines how the new destination bits are to be

computed from the source bit and the old

destination bits. In other words it removes the

previous image pixel color location to a new

location on the bccd Window. Then we call the

XDrawPoint function to draw a single pixel in the

bccd Window. The XDrawPoint function uses the

foreground pixel and function components of the

GC to draw a single point into the specified

drawable. [2]

These changes were included in the GalaxSee

project specifically in the Gal.cpp code. This c++

file manages each created star and includes it in the

foreground at the bccd Window. With these

changes being done to the Gal.cpp file we can now

include BMP image files and give the GlaxSee

program a more attractive effect on the Galaxy

simulation.

Figure 7

GalaxSee Program Simulation

REFERENCES

[1] BCCD Version 3, February 12, 2013. Retrieved on May 4,

2014 from GalaxSee:

http://bccd.net/wiki/index.php/GalaxSee.

[2] Chapter 6: Color Management Functions, (n.d.). Retrieved

May 5, 2014, from Tronche:

http://tronche.com/gui/x/xlib/color/.

[3] LittleFe, February 21, 2011. Retrieved from LF WIKI:

https://littlefe.net/wiki/index.php/LittleFe_Manual#GalaxS

ee_.28Located_in_Gal.29.

[4] LittleFe Parallel and ClusterComputing Education On The

Move, 2012. Retrieved on May 4, 2012, from LittleFe:

http://littlefe.net/.

[5] Mathematical functions for complex numbers. (n.d.).

Retrieved May 4, 2014, from Python:

https://docs.python.org/2/library/cmath.html.

[6] Microsoft Windows Bitmap File Format Summary. (n.d.).

Retrieved May 4, 2014, from FileFormatInfo:

http://www.fileformat.info/format/bmp/egff.htm.

[7] Robert M. Panoff, P. J. (2006). LittleFe Overview.

Retrieved May 4, 2014, from Shodor:

http://www.shodor.org/media/content//petascale/materials/

general/presentations/littlefe-overview_pdf.pdf.

[8] Safe C Library, February 13, 2009. Retrieved on May 4,

2014, from Safe C Library: http://safeclib.sourceforge.net/.

[9] Std:basic_stringstream, August 15, 2013. Retrieved on

May 4, 2014 from cppreference:

http://en.cppreference.com/w/cpp/io/basic_stringstream.

http://bccd.net/wiki/index.php/GalaxSee
http://tronche.com/gui/x/xlib/color/
https://littlefe.net/wiki/index.php/LittleFe_Manual#GalaxSee_.28Located_in_Gal.29
https://littlefe.net/wiki/index.php/LittleFe_Manual#GalaxSee_.28Located_in_Gal.29
http://littlefe.net/
https://docs.python.org/2/library/cmath.html
http://www.fileformat.info/format/bmp/egff.htm
http://www.shodor.org/media/content/petascale/materials/general/presentations/littlefe-overview_pdf.pdf
http://www.shodor.org/media/content/petascale/materials/general/presentations/littlefe-overview_pdf.pdf
http://safeclib.sourceforge.net/
http://en.cppreference.com/w/cpp/io/basic_stringstream

