
Orange Dating: Developing Modern Java Web Applications

William Mercado Millán

Master of Engineering in Computer Engineering

Alfredo Cruz, Ph.D.

Computer Engineering Department

Polytechnic University of Puerto Rico

Abstract – Developing a Java web application can

be considered too complex for most modern

developers, mainly because Java has a reputation

of being difficult and requiring lots of coding.

However, there are modern tools and frameworks

that are designed to facilitate the development of

web applications in Java. These frameworks are

focused on reducing the amount of code needed to

make the basic functionality of an application. One

of the frameworks used in this project is Spring.

This framework provides a MVC architecture

designed to facilitate the creation of a modern Java

web application with a minimal configuration and

code. This document describes an online dating

system that was developed in a short time, using

Spring framework and Semantic UI to achieve the

goal of developing a whole system in a limited

amount of time. The online dating system suggests

friends based on answers to a questionnaire after

the registration. The goal of the system is to make

accurate suggestions to a user that is interested in

identifying an ideal partner for a date.

Key Terms – Java, Online Dating, Spring

Framework, Web Application.

INTRODUCTION

Developing an online dating system can be

very complex and could take a lot of time. This

could be a challenge due to the limited amount of

time and resources available. However technology

offers many ways to solve these problems. Part of

the focus of this project is to use the technologies

offered in the Java environment to create web based

applications in a short time. To achieve this goal, a

careful study of new technologies has been done in

order to create the full functionality of a complete

web application, reducing the amount of code

needed to a minimum.

In the past, creating Java web applications

would have required a lot of technical knowledge

and time, but now there is the advantage of modern

frameworks which reduce the amount of code and

configuration, allowing the developer to focus on

the design and not so much on coding. Reducing

code and configuration has been a crucial step in

the creation of this system and it has been the key

for completing the development on time, in a very

tight schedule.

SYSTEM OVERVIEW

The name of the system is Orange Dating and

the word orange comes from the “half orange” term

in Spanish that it is used to refer to the ideal partner

for a person. The system was created by studying

different online dating sites and taking the best

features of each of them as the requirements for this

system. The system was developed using Java and

the enterprise framework Spring. As mentioned

before, Spring provides a series of tools that help to

reduce the amount of code, and it also provides a

MVC architecture for web applications [1]. One of

the objectives of the development is to demonstrate

how Spring can facilitate the development of web

applications in Java. The system was developed

according to Spring’s best practices on how to

create a modern Java web application.

The system was developed on the basis of

other existing sites. One of the sites that was

evaluated is eHarmony, which is one of the top

online dating sites available [2]. It was carefully

studied and tested; and some of its good features

were also implemented in the system.

SYSTEM REQUIREMENTS

The system’s requirements consist of the list of

functionalities that the system will have. This

section describes the functional requirements for

the system developed.

Questionnaire

After a new user completes the registration, to

know the user better the system will be asking the

user a series of questions, this questions will be

used by the system to determine some aspects of

that user so that the system can suggest contacts for

that user. Questions can be configured in the

database, the amount of questions can be

configured as needed. Each question has a

category, when the user answers the question the

category score will be increased. Questions can be

negative or positive, if it’s a negative question it

means that the answer to that question will impact

the category in a negative way, if the question is a

positive question it will impact in a positive way

the category. The current categories are: romantic,

organized, passive and religious. Each category has

a set of questions that will deter-mine the top

categories for that user. If the user is determined to

be romantic and religious, it will be matched with

other users that are also romantic or religious.

Questions and categories can be configured in

the database, the amount of questions can be

increased as well as the amount of categories, and

this can provide a more accurate result of the

answers. But for the purpose of this project, we

will limit the amount of questions to 28 and the

categories to 4.

Recommendations

One important requirement for this system is to

be able to suggest or recommend new friends to

users. Our users are looking for their perfect

match, and when users try to find their match in

other places the match might be full of surprises.

Orange Dating system will provide accurate

recommendations to users based on the questions

that were answered. In order to suggest a match,

the system will first determine the place of

residence, if the user lives in San Juan the system

will try to find matches that are from San Juan.

The system will also match the preferences that

were specified in the registration, if the user wants

to be matched with females from a range of 18-24

years old the system will take that into

consideration as well. From all the matches that are

found after the initial filtering the user will only be

recommended with the users that are a match for

him based on the answer to the questions that were

asked when the profile was created.

Profile

The profile is the home screen when the user

logins to the system, the profile screen will have the

details of the user, the details that will be shared to

other users. These details can be easily updated by

clicking the pencil icon. Anything that is displayed

in the profile can be updated from the users profile

screen. For example smoke and alcohol

preferences, maybe the user started smoking again

and wants to update that field so that other users

know, or maybe the user doesn’t want to drink

more alcohol and changes its preference so that

other users are well aware.

Subscription

Orange Dating system has subscription

business model, in which the actions the user can

make are limited by the features that are included in

the subscription that the user selected. Users are

able to register and use the system for free so that

they can have a glimpse of the features that the

system has. In the free subscription the system will

ask the questions to the users and will display

recommendations based on the answers from the

user but the user will not be able to see the

suggested user profile picture. The only

information that will be available to the users is the

name, age and city.

The purpose of the free subscription is to

engage the users and motivate them to upgrade a

paid subscription. There are two types of paid

subscriptions Premium and Unlimited. Premium

subscription will open the main features of the

system to users the users will now be allowed to see

the profile picture of other users, visit their profile

and have a vote in the attractive score. Basically

most of the important features are available in this

subscription however one important feature will be

left for the unlimited subscription and that is the

messaging system only users that are subscribed to

the unlimited subscription will have the ability to

send messages to other users. Unlimited users will

have the full functionality of the system.

Subscriptions are charged monthly and users

will have the option to upgrade to a greater

subscription at any time. Once the subscription is

charged it will be available for one month.

Messages

Messages will be the mechanism available for

users to engage in a conversation with another user

but this feature will only be available to unlimited

subscription users. The message feature will allow

users to write a 160 character message to another

user in order to engage in a conversation. A user

can only send a message to another user once, and

only after the other user replies the user can send

another message. This will avoid spam. Messages

will help users to get engaged with the suggested

users that were matched based on the questions

answered. The only users that will be available to

send messages are those that matched based on the

answer to the initial questions.

Attractive Score

The attractive score is based on rating that

users give to other users when they visit there

suggested user profile, this score will tell how

attractive the user is. The attractive score will be

the average number that most people score for that

user. Users are limited to only rating other users

once. The purpose of the attractive score is to let

other users know how attractive that particular user

is to other users. To achieve a higher score users

should write interesting information on their

profile.

FUNCTIONAL DESIGN

This part of the document describes the

functional part of the system. Basically what will

be described next are the screens designed to fulfill

the requirements of the system that were described

in the previous section.

Figure 1

Home Screen

The home screen in Figure 1 was designed in

an attractive way so that new users can be engaged

to join Orange Dating system. The page suggest

that a user can search for friend right away but it’s

only a catch up to get users to register. The

suggestion for your area is an example of the real

suggestions that the system can make when the

registration is done and the questions are answered.

The suggestions area in the home screen was

designed to detect the IP address of the user and

display random profiles that live near the physical

location of the IP address.

Figure 2

Registration

The registration wizard will be gathering the

basic information of users including the profile

picture which can be uploaded in the first step as

seen in Figure 2. The information obtained from

the registration process will be later used to fine

tune friend suggestions and will also obtain

information about the subscription and payments

methods that the user wants to have.

After the registration process is completed the

user will be sent an email to confirm the

registration. The activation code will have a time

limit for the user to activate its profile. If the email

was confirmed on time the profile will be activated

and the user will be able to log in to the system,

otherwise the system will not recognize the profile

as a valid one.

Send
Activation

Email

Receive
Confirmation

Activate Profile
Reject

Activation

Delete Profile

Start

End

Validate Errors

Complete
Registration

Fail

Pass

Confirmed On
Time?

YesNo

Return to
Login Screen

Mandrill SMTP

Figure 3

Registration Flow

 Figure 3 shows the registration flow logic that

is followed after the user has finish the registration

process, the registration flow is designed to avoid

bots creating fake accounts, as there is a need for

human intervention to activate the profiles

Figure 4

Questionnaire

The questionnaire is the set a questions that is

presented to new users when they register in

system. This questionnaire will help the system

determine which of the recommended users is more

compatible with the user. The goal is that the

recommended users be a compatible match,

because they would both be on the same category

of thing they like to do. Figure 4 is presenting an

example questions on how the questionnaire is

presented to the user. The user has 3 options as

answer and depending on the answer chosen the

amount of points that will be added to each

question category. If the user select answer No and

the question is positive would mean that no score

will be added for that category. If the user answer is

Maybe then only 1 point is added to the category. If

the user answer is Likely and it’s a positive

questions the score that will be added is 2 points. If

it’s a negative question the Likely answer would

then be zero points and the No answer would be 2

points. There are currently 20 questions configured

that the user has to answer, and the questionnaire

will display to the user the progress of the questions

with a progress bar. If the user gets tired of

answering questions, the user can exit the system

and then come back and continue answering the

questionnaire. The system will force the users to

answer the questions before they can see their

profile, because it is based on the answers that are

given in those questions that the system is able to

recommend suggestions for that user. The goal of

the system is to make accurate suggestions and that

is why the system must ensure that the users answer

the questionnaire before they can continue to their

profile.

Figure 5

Profile Screen

Figure 5 presents the profile screen that is the

main screen presented to the user after logging in

and answering the questions. This screen will

display the information that was gathered during

the registration plus some additional information

that will be set when the user arrives at the profile

screen for the first time. Every field displayed in

the profile screen can be edited by clicking on the

pencil icon in the right corner of the object. The

profile picture can also be updated in this screen.

Figure 6

Suggestions Screen

Figure 6 shows the suggestions screen that will

be displayed after selecting suggestions from the

top menu. The users that appear in the suggestions

page were specifically matched by the answer to the

questions of the questionnaire. From this screen the

user can see the suggested user profile or send a

message to that user to initiate a conversation. The

user can also visit the suggested friend profile to

read all the information that the user published in

the profile and has the opportunity of rating the user

to affect the attractive score of that user. The user

will only be allowed to score in the attractive score

once.

TECHNICAL DESIGN

The technical design section consists of a

description of the implementation of the system, the

section includes information about the

programming tools, frameworks, and architecture

of the system.

Programming Tools

Programming tools are used to ease the

development of the application and if used properly

they can be beneficial to reduce the development

effort to provide faster results. The tools used to

develop the system will be described next.

Spring Tool Suite

Spring Tool Suite abbreviated with STS is an

integrated development environment (IDE)

provided by Spring that includes a set of tools for

Java developers using Spring Framework. STS is

based on Eclipse meaning that all Eclipse plugins

are compatible and also comes pre-loaded with

many important plug-ins already installed [3]. STS

comes with many features out of the box and one of

the features that is being used in this project is

Maven. STS includes an embedded version of

Maven which is necessary for development of the

system. Maven is used to resolve dependencies and

using a combination of plugins can be used to

create Jar and War files. [4].

Spring Boot

This project was developed using the latest

technologies from Spring. Spring contains a set of

sub projects that are designed to address specific

programming issues. One of the most important

project of the new version of Spring is Spring Boot.

Spring Boot project is focused on the reduction of

configuration needed to create and run a project, it

also removes the requirement of using a separate

application server. Out of the box Spring Boot

comes preloaded with Apache Tomcat latest stable

version. Spring Boot projects can be executed from

a single Jar file [5].

JRebel

One of the biggest problems with Java

development is the constant need to restart the

application server to load the new changes.

Restarting the application server could take up to

one minute. Every change that is done in Java files

require an application server restart to take effect.

So this basically adds a lot of time to the

development. For this reason there is a product

called JRebel. This product is focused in avoiding

constant restarts on the application server and thus

reducing the development time [6].

JPA and Hibernate

Spring Data is the Spring project used to

connect to different data sources. It is an abstraction

layer that relieves the developer from having to

implement specific implementations for popular

databases like MySQL and Oracle. Java

Persistence API (JPA) is a Java standard used to

map Java objects to database tables. JPA is

implemented with annotations which are used to

specify how an object will be mapped to a table in

the database. So basically the complete database

structure can be created by combining different

Java objects and mapping them with tables using

JPA annotations.

Finally, after the objects have been mapped,

Spring uses Hibernate to interact with the database.

Hibernate is an Object Relational Management

(ORM) tool that understands JPA standard [7, 8].

Hibernate can be implemented alone or can be

implemented with Spring. The project was

implemented using the Spring project called Spring

Data that adds a layer that abstracts the

implementation of Hibernate. Abstracting

Hibernate allows flexibility, if for some reason the

framework needs to be replaced in the future, the

abstraction helps reduce the code impact. One

good feature that Hibernate has is that it can create

the schema of the database based on the domain

objects that defined the database and that are

mapped to tables using JPA annotations.

Spring MVC

Spring MVC is part of the Spring and it is very

easy to use. It is prepared to work with redirects by

mapping REST addresses to actions methods. It

sup-ports the different REST operations like

(POST, GET, PUT, DELETE) for example. It also

provides ways to upload file to a controller and

handle Multi-Part parameters. With an additional

library Spring MVC support JSON request and

responses. The controller can receive a JSON string

and convert it to a java object which is very useful

when dealing with jQuery requests.

APPLICATION ARCHITECTURE

The system was designed following the

recommended architecture for web applications in

Spring. Spring follows the MVC architecture and

also follows a three-tier architecture in which the

layers are: Presentation, Logic and Data. This

layers are well followed in system. The upper layer

cannot directly communicate with the lower layers.

Spring recommends the use of these layers and

gives each layer a different responsibility.

Controller

View

Service

Repository

Domain

Database

Figure 7

High Level Architecture

Figure 7 shows the high level architecture in

place for the developed system. This architecture

was done in accordance to MVC architecture and

three tier architecture. It is important for the

developer to understand this architecture because

the flow of data needs to happen in this specific

order, and each layer has its own set of

responsibilities that must be respected when

making code changes. Each tier is explained in

detail in the next sections.

Presentation Tier

The tier shown in Figure 7 is the presentation

tier and is in charge of handling the interaction with

the front end. This tier is very important because

it’s the face of the application. This tier has the

responsibility of handling human interaction with

the system and needs to make sure that the

information entered by humans is correct. To

achieve correctness the presentation tier needs to

have a set of validation tools to make sure that user

input is correct. Sometimes by mistake and

sometimes in purpose, users tend to enter bad

information in the input fields, and those fields

must be validated before they are processed by the

rest of application layers.

It is also the responsibility of the presentation

layer to be user friendly. The pages must be

intuitive so that users can easily understand the

actions intended for them to execute. It is a

challenge to make a page user friendly. Sometimes

it requires the use of other frameworks that can

provide alternatives to simple web pages, like for

example a modal window. There are tons of

libraries that are designed to facilitate the design of

user friendly web pages.

Presentation Tier: View

The view layer is part of the presentation tier.

This layer is very important, because it manages

HTML documents. That is the front end that users

will be interacting with. The view layer can

incorporate a set of tools and plug-ins that can add

valuable functionality to the system. In the case of

Orange Dating a library called Semantic UI was

introduced. One of the goals of the development of

this project is to reduce the amount of development

time. One of the biggest challenges that developers

face when they are developing a web application is

in the View layer. Creating intuitive HTML pages

is a good way to make the application more user

friendly. Sometimes in order to make something

look exactly the way we need, we are forced to

spend a lot of time tweaking CSS, Javascript and

HTML files to achieve our goal. HTML was

become more much better in these days with the

introduction of HTML 5 but there are still some

challenges that developers face. Semantic UI css

library is designed to be very intuitive for

developers, the names states that the library is

implemented in a semantic way, meaning that with

the use of simple English words, a developer can

achieve great looking interfaces [9]. The following

code segment is an example of Semantic UI:

<%@ include file="header.jsp" %>

<div class="ui three column grid">
 <div class="column">
 </div>
 <div class="column">
 <div class="ui segment">
 </div>
 </div>
 <div class="column">
 </div>
</div>
<%@ include file="footer.jsp" %>

 The previous code segment presents an

example of what Semantic UI can achieve. As

noted in the example there are a set of division

objects from HTML with some classes specified.

These classes are invoking Semantic UI

instructions to format our web page the way we

need it. The previous code example intends to

create a 3 column web site with the content in the

middle. To achieve this we declare a division with

a class “ui three column grid” meaning that our

HTML code will be divided in 3 columns. After

declaring this division, we then create three

divisions inside, this divisions will have the class of

type “column” which means that it’s a column of

the declared grid. Since we want to have our

content on the middle, we are only going to use the

center column and leave the other two empty. In

the center column we then insert the HTML code

we need to display. The “ui segment” div creates a

box in which we can put our form or HTML tags

that we need.

Presentation Tier: Controller

View are very important, but they have a set of

responsibilities that limit their functionality, MVC

architecture states that Views and Controllers need

to be separated. To display information the view

needs to interact with the server. The most basic

example is when an HTML form is created with an

input tag type submit. When this button is pressed

the HTML page will request the server to process

that form and wait for a response. The server must

then return the new page to be displayed along with

the data.

Spring uses JSP tags to bind data from the

controller to HTML pages. JSP tags simplify the

work of the controller because the data is received

in the corresponding objects. The following code

segment shows an example on how to bind an

object to an HTML input:

<form:input path="profile.username" …

 This example uses the “form:input”. When the

web page is served to the browser, the JSP tags are

removed and converted to HTML code so that

browser can correctly display. Take a look at the

path attribute, this attribute specifies which

programmatic object the control is binded to. The

previous code example a form input tag is tied to

the object profile and attribute username. When

this form is submitted it is going to bind the user

input for this field to the “profile.username” value,

and then it is the responsibility of the controller to

take the necessary actions and validations on the

field.

 Spring MVC makes it very convenient and

easy to develop a dynamic website using Java. It is

a crucial part of this project to reduce development

efforts. Controllers also have the responsibility of

receiving the data from the view layer and

validating the data before sending it to the next

layer, there are many ways to validate the data and

Spring has an “Errors” objects that its associated

with the object received from the View that can be

used to reject the value and return the object to the

View.

 When data retrieval is needed the controller

will need to communicate with the next level which

is the Service level. In order to communicate with

the service level, the controller needs to include in

its definition an instance of each service that needs

to invoke, this can get very repetitive if the same

service needs to be reused in many controllers so in

this case the Service instances were instantiated in

the “AbstractController” so that every controller

has access to the Services. To instantiate a service

Spring provides an annotation called

“@Autowired” that basically injects an instance of

that component or service in this case. As

mentioned earlier the controller is responsible of

validating the data that came from the View before

sending the data to the next level. When the

controller finally send the object to the Service the

controller needs to interpret the result of the Service

request and take an action on the View. The

controller will decide which HTML page will be

displayed next.

Logic Tier

The logic layer is where the intelligence of the

application lives, this layer is also known as the

business logic layer, all the complexity that is not

related to the View or user interactions should be

managed in this layer. For example if the user tries

to login to the application the layer that needs to

determine if the credentials submitted by the user

are correct is the logic layer which will then return

a result to the controller so the controller knows

what action to take on the View.

Logic Tier: Service

The service layer is one of the most important

layers in the whole application. This layer is

responsible of managing the most advanced logics

in the system. All business logic and business rules

should be developed in this layer. The more deeply

we go down the layers the closer we are to the

database access, the Service layer has the

responsibility of invoking database queries when

necessary and taking actions based on the result of

the queries to the database. The following code

segment is an example of a service:

@Service("countryService")
public class DataCountryService
implements CountryService{

 @Autowired
 private CountryRepository
countryRepository;

 @Override
 public Country find(Long id) {
 return
countryRepository.findOne(id);
 }

The implementation of “Country Service” as

can be noted in the previous code example is

responsible of communicating with the Repository

layer. The Repository layer is very close to the

Data Tier which will retrieve the data from the

database and provide it to the Service layer. In

most cases as noted in the example the Service

layer will only be a bridge to jump to the next layer

the Repository layer.

Logic Tier: Repository

The Repository layer is an important part of the

architecture used in the System. Repository is part

of Spring Data and provides an easy and fast way to

develop queries in the database. Spring Data

handles the connection to the database and converts

the result of queries to objects. Spring Data uses

Hibernate to communicate with the database a

convert queries to object results. Spring Data

provides an interface that basically implements the

basic CRUD operations needed for an object or

table in the database [10]. So by simply creating a

Repository object associated with a Domain object

the Repository object provides an interface to make

queries to the database to the object that is

associated with. It is important to note that even

though Repositories are interfaces we do not need

to implement them, we just use them with

“@Autowired” annotation. Repositories have the

responsibility of providing basic operations like

CRUD and some more advanced queries too,

Repositories can be modified to provide custom

queries.

Logic Tier: Domain

The Domain layer will contain domain object

definitions, in the domain layer there will be an

object per table in the database. Domain objects

are table representation in objects. Mixed with the

domain objects are the some “Enum Types” that are

not mapped to tables in the database, and some

Many to Many relationship tables in the database

are not mapped to a domain object, only if it’s

needed it will be mapped. Domain objects are

mapped with tables in the database using a library

called Java Persistence API (JPA) this library

provides a series of annotations to map an object to

a table. For this project in particular a Hibernate

option was used to automatically create the

database schema, Hibernate uses the JPA

annotations to convert the object into a database

table, if the domain object is properly annotated it

will create an identical database to the object set.

This is another key factor used in this project to

reduce development time.

Data Tier

The data tier is basically where the database is.

This layered system is designed so that it can be

scalable and adaptable. Since we are using JPA

standard to define our domain objects, this means

that if the database has to be changed from MySQL

to Oracle is very simple. The developer doesn’t

need to change anything, only the driver that

Hibernate is going to use to connect to the database.

Is that simple.

Database

The database for this project was modeled with

object oriented programming and JPA annotations.

This is very useful approach to synchronize java

code with the database. Hibernate has a

configuration to automatically create the DDL by

reading the objects defined in code along with the

annotations and converting them to a relational

database. Hibernate was configured to use MySQL

so that it knows how to define the DDL for the

database. So basically the developer doesn’t need

to be an expert in databases just needs to know how

the objects are going to be used in code and

Hibernate makes sure to translate that into a

relational database. There are some known issues

with this approach, but in general it works great.

CONCLUSION

The main objectives of this research and

development was to prove that Spring Framework

and tools like Semantic UI could reduce the

develop-ment effort. Spring Framework provides

an easy way to develop the backend system and

creating a new query to the database would only

take a couple minutes with only a few lines of code

however there was a downfall, the learning curve

was stiff, at the beginning of the development a lot

of time was spent learning how to use the

frameworks and tools, it took a lot of time to

understand the concept of Spring Boot, and learn

how to use Semantic UI, however after the setup

was completed and the understanding of the

frameworks was more advanced, the developed

result were increased and to prove the point after

the base HTML pages were designed creating the

rest of the pages only took a minimal effort and

adding new functionality to the system was easier.

Spring Framework has improved many thing in

their latest release but the documentation is not

easy to understand and can be hard for new user.

REFERENCES

[1] Spring Platform, Spring Documentation, 2014. Retrieved

on April 28, 2014 from http://spring.io/docs.

[2] eHarmony, Company Overview, 2014. Retrieved on May

5, 2014 from http://www.eharmony.com/about/eharmony.

[3] Spring Platform, Spring Tools, 2014. Retrieved on May 25

2014 from http://spring.io/tools.

[4] Apache Maven, What is maven?, 2014. Retrieved on April

15, 2014 from http://maven.apache.org/what-is-

maven.html.

[5] Spring Platform, Spring Boot, 2014. Retrieved on April 23,

2014 from http://-projects.spring.io/spring-boot/.

[6] Zero Turnaround, JRebel, 2014. Retried on April 15, 2014

from http://zeroturnaround.om/software/jrebel/.

[7] J. Community, Hibernate ORM Documentation, 2014.

Retrieved on April 20, 2014 from

http://hibernate.org/orm/documentation/.

[8] Hibernate, What is ORM?, 2014. Retrieved on April 16,

2014 from http://hiber-nate.org/orm/what-is-an-orm/

[9] Semantic UI, Overview, 2014. Retrieved on April 15, 2014

from http://semantic-ui.com/introduction/overview.html.

[10] Spring Platform, Spring Data JPA, 2014. Retrieved on

April 25, 2014 from http://projects.spring.io/spring-data-

jpa/.

http://spring.io/docs
http://www.eharmony.com/about/eharmony
http://spring.io/tools
http://maven.apache.org/what-is-maven.html
http://maven.apache.org/what-is-maven.html
http://-projects.spring.io/spring-boot/
http://zeroturnaround.om/software/jrebel/
http://hibernate.org/orm/documentation/
http://semantic-ui.com/introduction/overview.html
http://projects.spring.io/spring-data-jpa/
http://projects.spring.io/spring-data-jpa/

