
Static and Dynamic Analysis of Android Mobile Malware

Ana Patricia Becerra

Master of Engineering in Computer Engineering

Jeffrey Duffany, Ph.D.

Electrical and Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract ⎯ In the last years, mobile malware has

become a serious threat to thousands of users. The

massive increase in the use of smartphones with the

Android platform makes the need for malware

analysis of this platform a critical issue. It’s

necessary though, to understand how the Android

Malware works, and also to find out how to defend

this platform from malicious attacks. In this project,

we use the reverse engineering as a tool to

understand the structure and functionality of the

malware. We will define the characteristics of the

android malware through the objectives that it was

created for. As an example, we present the results of

reverse engineering of NotCompatible because the

malware has the functionality of infected 20,000

devices for day and attack the android markets over

and over in the last three years, and Arspam, which

was designed for political purposes to recognize the

orientation of the prayers.

Key Terms ⎯ Android Malware, Malicious

Code, Mobile Malware, Smartphone Security.

INTRODUCTION

During the last three years, Android OS has

incremented its popularity becoming the most

preferred mobile by users.

This has brought a consequence that with

malware for android mobile, cybercriminals have

discovered a new business model.

The phenomenon of malicious code aimed at

android mobile is starting to developed more

complexity. The attacks of android mobile have

actually increased in numbers on the last two years.

The evolution of cybercrime found another

target to attack of android mobile. The malicious

authors can to incorporate their attacks in the android

application without users noticing.

Understand what the methodology uses to

change or add malicious code into de android

applications can allow us to introduce new security

tools on android mobile.

In this paper, we learned malware analysis as a

process where we will study its code structure,

operation and functionality.

Among of the objectives of this project are:

• Understand the different tools used to reverse

engineering of malware for android platform.

• Penetrate into the used data to know how the

android platform is compromised.

• Study different attacks to try to get similar

features that allow you to obtain patterns

between them.

Our goal is to understand how Android malware

works. For them, we created an isolated virtual

environment, and we acquired more than 121

examples of android malware but we used the most

important and sophisticated.

BACKGROUND

Android is an operating system initially

developed by Android Inc., a firm purchased by

Google in 2005, in collaboration with the Open

Handset Alliance.

Open Handset Alliance is an alliance of dozens

of organizations committed to bringing “better” and

more “open” mobile phone to market [1]. This

operating system is based on a modified version of

the Linux kernel. Unlike other mobile operating

systems like iOS or Windows Phone, Android is

developed in an open and accessible to both the

source code and the list of incidents which are

reported unresolved problems and new problems to

report.

Therefore, Android is the first open source

mobile application platform that provides a base

system, an application middleware layer, a Java

software development kit (SDK), and a collection of

system application [2]. Definitely to be developed in

an open source, this is an advantage for those who

develop their applications as their users. You can

customize and modify the maximum phone

functions by simply installing an application.

Another advantage of Android is the incredible

confidence that you are receiving from

manufacturers. As a result, this platform has become

the most used in what refers to mobile devices.

ANDROID PLATFORM

Android is born of the union of the Linux

operating system and a Java-based platform called

Dalvik [3]. Basically, software developers write

their applications in the Java programming language

and tools of Google, for example the Android SDK,

allows Java programs running on the platform

Dalvik on Android devices. It is unclear why Google

chose to use a non-standard Java platform (the

machine Dalvik) to run their applications. Possibly it

was to avoid patent infringement.

Every Android application runs on its own

virtual machine, like Java applications do, and each

virtual machine is isolated in its own Linux process.

This ensures that no process model can access the

resources of any other process (unless the device is

unlocked).

While the Java virtual machine was designed to

be a safe place, sandboxed, that is a system capable

of containing potential malware, Android is not

based on your virtual machine technology to

intensify its security. Instead, all the protection is

based directly on the Linux-based operating system.

The Android security model is based primarily

on: traditional access control, isolation, and a

security model based on permissions.

However, it is important to note that the security

of Android does not rely only on the implementation

of their software. Google released the source code to

complete programming for all ages, allowing the

project to get analysis of all security Android

community. Google argues that this openness helps

discover defects and leads to improvements in

security.

ANDROID APPLICATION

The Android applications mostly are written in

Java and use XML files for its configuration [4]. The

XML file is known as AndroidManifest.xml. The

Android compiler is the Dalvik VM that it compiles

the Java files into class file and after that, into dex

files, which are bytecode. Like the dex file, the xml

files also are converted to a binary format. Both dex

and xml files and other resources are packed into

.apk file. This .apk package is signed with a

developer’s key and uploaded to the android market

for its distribution.

Figure 1 shows the Angry Birds game for

android opening with the 7-Zip file program. As

displays, the android application have the extension

.apk but it is just ZIP files. The .apk contains

AndroidManifest who declares which permissions to

access the application will have to operate, also the

resources and the classes.

Figure 1

Inside the .apk

THE REVERSE ENGINEERING TOOLS

There are different tools for reverse engineering

that can be used to understanding the mobile

malware, but for purpose of our project, we used

Dex2Jar [5] to decompile the classes.dex in a Java

byte code. We can open this classes.dex into JD-GUI

[6]. Apktool [7] is used to dissemble the

manifest.xml file and WinMerge [8] to compare the

apk-file infected with the original apk-file, where all

of them run in a virtual machine (VirtualBox

Program) [9] on Windows (Windows 7)

environment.

ANDROID MALWARE

CHARACTERIZATION

In this section, we describe a brief

characterization of existing malware according to

their target attack, but we want to mention that other

authors in the area characterize the existing android

malware for its installation, activation or/and

malicious payload [10].

In our research, we wanted to emphasize that

when we write about of the android attacks it is

important to consider what the malware authors

wants to achieve with the malicious application.

After analyzing the existing android malware we can

characterize the malicious payload into four

different categories: privilege escalation, remote

control, financial charges and personal information

stealing [10].

Figure 2

An Overview of Existing Android Malware

In the existing malware recollected el 38% of

the families malware was designed to cause finance

charges to infected users. If we compare this

percentage with the percentage analyzed in 2012 for

Mobile-Sandbox in over 300,000 Android

applications they reported the following distribution

of malicious behavior [11]:

• 51.3% Steal personal information

• 30.1 Send Premium rated SMS messages

• 23.5 Characteristics of a Botnet

• 18.3% Contain Root Exploits.

These attacking objectives are not exclusive

between them, its like saying that in an Android

Malware can exist various attacking objectives. We

would like to highlight that a lot of times steal

personal information or the personal profile from the

users represents a lot of money for the social media

company. Steal personal information includes

address book entries, IMEI, GPS position of the user

between others

The second distribution of malicious behavior

mentioned is sending SMS messages rates with

30.1%, most common to make money immediately

is sending these messages to premium rated. Another

malicious behavior that seems important to us is that

23.5% of malware families have the ability to

connect to a remote server to receive and execute

commands that is what we know as botnet.

COMMON TECHNIQUES OF INFECT APPS

One of the common techniques that malware

authors use to insert malicious codes into the apps is

the repackaging. The repackaging consist in

download popular apps dissembles them with the

tools mentioned in the section Reverse Engineering

tools, enclose malicious contents, and then re-

assemble and submit the new apps to the official or

other different Android Markets [10].

Yajin Zhou and Xuxian Jiang found in your

research that the total of 1260 malware examples,

1083 of them are repackaged. The 86% of the total

malware collected was infected by this technique, in

addition it was found that the malware authors have

chosen a variety of apps for repackaging that include

paid apps, popular games apps, powerful utility

apps, as well as porn related apps [10].

AnserverBot is an example of repackaging and

was considered as one of most sophisticated Android

malware because it employs several sophisticated

techniques to evade detection and analysis [12].

Other examples of repackaging include BaseBridge,

CoinPirate, DogWars, DroidDream, DroidKunFu,

Geinimi, GingerMaster, and Zsone. The popular

Angry Bird app was infected with the repackaging

technique and when you compare the Angry Bird

Original download for the Official Android Market

with the infected app download of the third party app

markets. Just comparing the AndroidManifest.xml

of both apps you may notice that the package is

called different in the app infected. Rovio

Entertainment creates the Angry Birds app and the

structure that uses for its package are:

• com.rovio.angrybirdsspaceHD;

• com.rovio.angrybirdsspace.ads;

• com.rovio.angrybirdsrio;

• com.rovio.angrybirds;

• com.rovio.angrybirdsseasons;

• com.rovio.angrybirdsspace.premium

 As show in Figure 3 and Figure 4, in the Angry

Birds app infected the package call

com.rovio.new.ads.

Figure 3

Angry Birds Original Manifiest File

Figure 4

Angry Birds Infected Manifiest File

Figure 5

Modified Permission in the Android Manifest File

Figure 6

The Original Permission in the Andoid Manifest File

Figure 5 and Figure 6 show other thing that you

can observe is that the only permission that is not

included in the original app is the READ_LOGS.

The READ_LOGS allows an application to read the

low-level system log files. The READ_LOGS

permission is not granted to thirty-party apps

anymore with the version Android 4.1, JellyBean.

The second technique that is made it difficult for

detection is update attack. This technique, instead of

enclosing the payload as a whole, it only includes an

update component that will fetch or download the

malicious payloads at runtime. There are four

malware families that adopt this attack: BaseBridge,

DroigKunFuUpdate, AnserveBot, and Planton [11].

The third technique applies the traditional drive-

by download attacks to mobile space [11]. The

malware is downloaded when users are redirected to

the malicious website. Examples of families

malware under this technique are GGTracker, Jifake,

Siptmo and Zitmo. The last two are created to steal

user’s sensitive banking information.

CASE STUDIES: NOT COMPATIBLE AND

ARSPAM

On this section will make a brief analysis of two

malware that attacked the operational system of

Android this year. The first is called Not compatible,

and we chose it for our analysis because is not the

first time that this kind of attack infects Android

devices and also this malware has the capacity to

infect 20,000 devices per day. The other malware

that we will analyze is Arspam in which infects

through the Alsalah app and what it does is secretly

send text messages with links to political.

NotCompatible

In the middle of 2012 it was discovered in the

android platform the malware called NotCompatible

[13]. This malware is designed to infect Android

mobiles and turn them into unwitting Web proxies.

The malware pretends to be a system update in order

to get unwitting users to install it. The system seems

to give access to protected networks through infected

Android devices. NotCompatible was named for its

apparent command-and-control server (C&C) with

domain notcompatibleapp.eu

To understand what this malware do, we need to

look first the information in the

AndroidManifest.xml. The AndroidManifest.xml

contains basis information of Android applications,

such as permissions, activities and services.

Unlike other malware NotCompatible not

asking a lot of permits and also not used an exploit

to get root permissions. To execute request access to

the Internet, network state, and is also notified when

it completes the system startup as show in Figure 7

under number 1. Also the Figure 7 we can observe

under number 2 that the file contents of

AndroidManifest.xml are filtered by start Operating

System (BOOT_COMPLETED) or user interaction

(USER_PRESENT) to trigger the execution of

OnBootReceiver Class that will start the execution

of the risk as show in Figure 8 into de classes.dex

open with the Java Decompiler. These two events in

particular execute the threat in the system.

BOOT_COMPLETED ensures that the malicious

code is executed when the system startup and

USER_PRESENT can allow the malicious code to

interact with the user. The target of this malware is

no steal information from the user but seeks to trick

the user for installing bogus security updates in the

system which could lead to infection of different

types of threats by using Social Engineering.

The main goal of this malware is to create a

connection to a remote server from where to

download suspected updates and receives

commands.

Another important point of this malware is the

file that contains the data connection and its content

encrypted. The static analysis of the Trojan allows

us to see how the process loads the configuration file

information (see Figure 9 public void on Create and

Config class that contains the parameters by default),

and get the key that allows to access to the

configuration data.

In the constructor of Config class, as show

Figure 10 show how the hash function is applied to

the key. In this case the key to encrypted the

information is “ZTY4MGESYQo” and finally, uses

encryption algorithms AES to decrypt the file with

the connection data.

Arspam Alsalah

This malware is designed to target particular

devices of the Middle East region, particularly those

with high presence of Muslims, because it install

itself as a useful application to recognize the

orientation, which addressed their prayers. The

target of malware is political.

Figure 7

NotCompatible AndroidManifest.xml

Figure 8

NotCompatible Class.dex

Figure 9

SecurityUpdateService Class

1

2

Figure 10

Config Class

When installing the application it request the

following massive set of permission:

INTERNET

ACCESS_FINE_LOCATION

ACCESS_NETWORK_STATE

INTERNET

WRITE_EXTERNAL_STORAGE

READ_CONTACTS

CHANGE_WIFI_MULTICAST_STATE

CLEAR_APP_USER_DATA

BIND_INPUT_METHOD

WRITE_CONTACTS

CLEAR_APP_CACHE

AUTHENTICATE_ACCOUNTS

READ_PHONE_STATE

SET_PREFERRED_APPLICATIONS

INTERNAL_SYSTEM_WINDOW

MANAGE_ACCOUNTS

PERSISTENT_ACTIVITY

FLASHLIGHT

ACCESS_NETWORK_STATE

ACCESS_MOCK_LOCATION

SEND_SMS

HARDWARE_TEST

ACCESS_CHECKIN_PROPERTIES

DISABLE_KEYGUARD

READ_SYNC_STATS

READ_INPUT_STATE

EXPAND_STATUS_BAR

BLUETOOTH

BIND_APPWIDGET

ACCESS_LOCATION_EXTRA_COMMANDS

BROADCAST_SMS

DIAGNOSTIC

BLUETOOTH_ADMIN

DEVICE_POWER

CHANGE_CONFIGURATION

DELETE_PACKAGES

BROADCAST_WAP_PUSH

REBOOT

WRITE_SMS

ACCESS_WIFI_STATE

ACCESS_COARSE_LOCATION

STATUS_BAR

MOUNT_UNMOUNT_FILESYSTEMS

GLOBAL_SEARCH

READ_SMS

CONTROL_LOCATION_UPDATES

MANAGE_APP_TOKENS

DELETE_CACHE_FILES

BATTERY_STATS

READ_SYNC_SETTINGS

SET_TIME_ZONE

READ_HISTORY_BOOKMARKS

MOUNT_FORMAT_FILESYSTEMS

SIGNAL_PERSISTENT_PROCESSES

MASTER_CLEAR

READ_LOGS

BRICK

SET_ACTIVITY_WATCHER

RECEIVE_SMS

GET_ACCOUNTS

CALL_PHONE

READ_CONTACTS

RESTART_PACKAGES

READ_CALENDAR

RECEIVE_BOOT_COMPLETED

CAMERA

ACCESS_FINE_LOCATION

SUBSCRIBED_FEEDS_READ

WAKE_LOCK

RECORD_AUDIO

INSTALL_PACKAGES

INJECT_EVENTS

RECEIVE_WAP_PUSH

USE_CREDENTIALS

ACCOUNT_MANAGER

SET_ALWAYS_FINISH

RECEIVE_MMS

WRITE_SECURE_SETTINGS

MODIFY_AUDIO_SETTINGS

WRITE_CALENDAR

WRITE_SYNC_SETTINGS

INSTALL_LOCATION_PROVIDER

SYSTEM_ALERT_WINDOW

MODIFY_PHONE_STATE

WRITE_SETTINGS

INTERNET

ACCESS_SURFACE_FLINGER

CHANGE_NETWORK_STATE

CALL_PRIVILEGED

CHANGE_COMPONENT_ENABLED_STATE

DUMP

SET_WALLPAPER

GET_TASKS

WRITE_EXTERNAL_STORAGE

PROCESS_OUTGOING_CALLS

WRITE_OWNER_DATA

WRITE_GSERVICES

SET_WALLPAPER_HINTS

BROADCAST_STICKY

READ_FRAME_BUFFER

GET_PACKAGE_SIZE

FORCE_BACK

UPDATE_DEVICE_STATS

WRITE_APN_SETTINGS

BROADCAST_PACKAGE_REMOVED

SET_ANIMATION_SCALE

SET_ORIENTATION

SET_DEBUG_APP

FACTORY_TEST

REORDER_TASKS

SET_PROCESS_LIMIT

READ_OWNER_DATA

CHANGE_WIFI_STATE

VIBRATE

SUBSCRIBED_FEEDS_WRITE

RECEIVE_BOOT_COMPLETED

This malware is installed through the Asalah,

in which is an application that calculates the salah

timings. The Trojan will gather the contacts on the

compromised device and send each one of the

following URLs [13]:

www.dhofaralaezz.com/vb/showthr

www.i7sastok.com/vb/showthr

www.dmahgareb.com/vb/showthr

mafia.clubme.net/t2139

www.4pal.net/vb/showthr

www.howwari.com/vb/showthr

forum.te3p.com/46461

www.htoof.com/vb/t18739

vb.roooo3.com/showthr

www.alsa7ab.com/vb/showthr

www.riyadhmoon.com/vb/showthr

forum.althuibi.com/showthr

www.2wx2.com/vb/showthr

www.mdmak.com/vb/showpo

www.too-8.com/vb/showthr

www.3z1z.com/vb/showthr

www.w32w.com/vb/showpo

forum.65man.com/65man33

CONCLUSION

The focus of this paper was to present the

methodology that the malicious author used to

add or modify the android applications. The tools

used allow unpacking the android application in a

simple way and allow code analysis. One of the

most important aspects is the permission that the

operational Android system granted when they

use and install the app. The usage has the ability

to accept or reject the permissions that the app

requires. We could think on putting flags inside

the Android system that could alert the usage of

how much he risk could be to it accept and install

that type of application. Some researchers are

developing models that can evaluate the potential

security risk from untrusted apps by analyzing

whether dangerous behaviors are exhibited by

these apps [14].

ACKNOWLEDGEMENT

 This project would not have been possible

without Dr. Jeffrey Duffany, who is my mentor

and has encouraged me to continue the work and

allow the opportunity to perform it. I would also

like to acknowledgment Dr. Alfred Cruz for

providing the opportunity to obtain the Nuclear

Regulatory Commission (NRC) Grant Fellowship

Award NRC-27-10-511.

REFERENCES

[1] Ableson, F., Sen, R., King, C., & Ortiz, C. “User

Interfaces”, Android in Action, Third Edition, 2011,

pages 65-101.

[2] Erick, W, Ongtang, M. & McDaniel, P. “Understanding

Android Security”, IEEE Security & Privacy Magazine,

vol.7, no. 1, January/February 2009, pp 50-57.

[3] Google Android, “Android the world’s most popular

mobile platform”, Google Inc., Retrieved on 24 August,

2013, http://developer.android.com/guide/basics/what-

is-android.html.

[4] Google Android, “Application Fundamentals”, Google

Inc., Retrieved on 24 August, 2013,

http://developer.android.com/guide/basics/what-is-

android.html.

[5] Google Android, “User Guide: dex2jar”, Google Inc.,

Retrieved on 23 August, 2013,

http://code.google.com/p/dex2jar/wiki/UserGuide.

[6] Google Android, “Get the Android SDK”, Google Inc.,

Retrieved on 23 August, 2013,

http://developer.android.com/sdk/index.html.

[7] Google Android,”Andoid-apktool”, Google Inc.,

Retrieved on 22 August 2013,

http://code.google.com/p/android-apktool/.

[8] WinMerge Software, “WinMerge”, WinMerge

Organization, Retrieved on 28 August 2013,

http://winmerge.org.

[9] Virtual Box Software, “Virtual Box”, Oracle Inc.,

Retrieved on 24 August, 2013,

http://www.virtualbox.org/wiki/Downloads.

[10] Zhou, Y. & Jiang, X., “Dissecting Android Malware:

Characterization and Evolution”, SP’12 Proceedings of

the 2012 IEEE Symposium on Security and Privacy, May

2012, pp. 95-109.

[11] Mobile phone forensics and mobile malware, “Our

Android Malware Summary for the Year 2012”,

Forensic blog, Retrieved on 17 September, 2013,

http://forensics.spreitzenbarth.de/2013/01/02/android-

malware-summary-2012/.

[12] Zhou, Y. & Jiang, X., “An Analysis of the AnserverBot

Trojan”, 2011, downloaded from the Worl Wide Web,

www.csc.ncsu.edu./faculty/jiang/pubs/AnserverBot_An

alysis.pdf.

[13] Parkour, Mila, “Contagio Mobile”, Contagio Blog,

Retrieved on September 1, 2013,

http://www.contagiominidump.com.

[14] Grace, M., Zhou, Y., Zhang, Q., Zou, S. & Jiang, X.,

“RiskRanker: Scalable and Accurate Zero-day Android

Malware Detection. Proceedings of the 10th

International Conference on Mobile Systems,

Application Services, June 25-29, 2012, pp. 281-294.

http://forensics.spreitzenbarth.de/2013/01/02/android-malware-summary-2012/
http://forensics.spreitzenbarth.de/2013/01/02/android-malware-summary-2012/
http://www.contagiominidump.com/

