
Business Intelligence Performance Optimization

Ángel N. Sierra

Master in Computer Science

Dr. Juan Ramirez

Electrical & Computer Engineering and Computer Science Department

Polytechnic University of Puerto Rico

Abstract  What happens when you are the

Business Intelligence (BI) developer and you need

to find a solution for an Analysis Service Job

execution that takes more than 20 hours to process

over 1.3 terra-bytes of data? This project will

presents an atypical scenario for a business

solution. In a typical scenario many introductory

books, papers or tutorials presents a random

company that uses a web site to sell their products

such as “Adventure Works”. Adventure works is a

company invented by Microsoft where they present

a database that they use to teach many concepts,

including Business Intelligence. In this project we

have a Business Intelligence solution already

deployed in a production environment, but the

database administrators are reporting performance

issues running the data processing to maintain this

solution up to date. I will be examining this solution

to assess where exactly the problem is and provide

a new solution that is capable to improve

processing performance.

Key Terms  Analysis Services, Business

Intelligence, Cube, Data Warehouse, Optimization,

Performance

PROBLEM STATEMENT

A BI Solution developed by an outsource

company is affecting production performance when

processing the CUBE created in Microsoft SQL

Server Analysis Services (SSAS). Due to this

situation, the Software Development Group for the

company “XYZ” has to review the design and

provide new solutions, which minimize the impact

that the processing is having in the production

environment.

MICROSOFT SQL SERVER – ANALYSIS

SERVICES (SSAS) ARCHITECTURE

SSAS is a service that is provided by Microsoft

to perform analysis and calculations such as

aggregation and data mining.

Typically, companies that have large sales are

interested in this type of solutions, as it allows them

to have a better understanding of the sales at

different levels. For example, the North America

Sales region manager could connect to the SSAS

database with Excel and generate pivot tables that

will allow everyone to see how many bicycles his

company sold in the last quarter. The supply chain

manager could connect to the same SSAS database

to check how many parts were used in the

production of certain bicycle during the last month.

In this project I will not be developing a

business intelligence (BI) solution from scratch. I

will be reviewing a solution that was created and

implemented by another developer in a production

environment. I will also design a new solution that

would improve SSAS performance.

To achieve this goal I will be using the SSAS

architecture presented in figure 1 as a guide to

allocate the source of the performance problem.

Figure 1

Microsoft SQL Server – Analysis Services Architecture

Source Systems

The source system presented in figure 1 refers

to the data source; the location where you are

obtaining the information you want to analyze.

Generally, the source could be another database

engine such as Oracle, Teradata, or DB2. It can also

be a flat file generated by a specific program.

In this project the data source is a Microsoft

SQL Server database engine for which we have no

documentation available such as an Entity

Relationship Diagram (ERD).

The entity relationship diagram is a graphical

representation of the tables that were created in a

database. This diagram can present information

such as the attributes inside the table and primary

keys. Figure 2 shows an example entity relationship

diagram created with Microsoft SQL Server

Management Studio (SSMS).

The tools available in SSMS allowed me to

generate an ERD. Inspection of this diagram

showed the following key information:

 The database contains one group of fifty one

tables related.

 The database contains one group of four tables

related.

 The database contains five groups of three

tables related.

 The database contains three groups of two

tables related.

 The database contains seventy-eight tables

unrelated.

Figure 2

Sample Database Diagram in Microsoft SSMS

The great amount of tables present in the

current database, gives a great idea of the current

database structure and it can lead to the common

assumption that it is using too many joins to query

the necessary information for the business

intelligence solution. To continue with the research

of the current data source, I believe it is healthy to

check the amount of data each table has. It can give

us a great idea of how much data could probably be

processed by Analysis Services. This information

could be obtained by executing in SSMS the script

provided below. The script retrieves the size

statistics for each table inside the database being

queried.

USE [MyDBName]

GO

SET NOCOUNT ON DBCC UPDATEUSAGE(0)

EXEC sp_spaceused

CREATE TABLE #tempTableSize (

[name] NVARCHAR(128)

, [rows] CHAR(11)

, reserved VARCHAR(18)

, data VARCHAR(18)

, index_size VARCHAR(18)

, unused VARCHAR(18))

INSERT #tempTableSize EXEC

sp_msForEachTable

 'EXEC sp_spaceused ''?'''

 SELECT * FROM #tempTableSize

SELECT SUM(CAST([rows] AS int)) AS

[rows]FROM #tempTableSize

DROP TABLE #tempTableSize;

The script presented above will generate a

temporary table in tempdb that will allow us to see

metadata such as number of rows and size for each

object. In this particular case we are obtaining the

information for one database object and 154 tables

object.

This script uses two store procedures to obtain

the desired statistics, sp_spaceused and

sp_msForEachTable. The first time sp_spaceused

is called alone, just before the CREATE clause, at

this point it is used to obtain the overall size

statistics of the database. The second time it is used

in conjunction with sp_msForEachTable, this time

it will fill the temporary table with size information

for each table inside the database.

After executing this script against the source

database I was able to observe the following:

 The biggest table is composed of

1,818,925,691 rows, approximately 1,060 GB.

 The second biggest table is composed of

376,730 rows, approximately 0.08 GB.

 About twenty-five tables were empty and

thirty-five tables had less than ten rows.

Information like this allows us to be more

curious about where the 1,060 GB table is being

used and why do we have so many empty tables.

Since this database is being used to store

transactions coming from different sources, it could

suggest that the original intention was to create

some sort of hybrid database. Some tables may be

used for data warehousing purposes while other

tables would be used for online transaction

processing and data warehousing.

Analysis Services Space

The next area in the architecture is the Analysis

Services Space and as presented in the architecture,

it is divided in two engines and a common element

in business intelligence, known as the cube.

In a very generalized and quick overview, the

first engine is the processing unit. Its functionality

is to retrieve the desired information from the data

source and perform the required aggregations to

populate the cube designed by the BI developer.

The Cube is the logical unit that stores the

desired measurements to be analyzed and the actual

level for which you would like to know its total

values.

The second engine is the querying unit and it is

in charge of returning the answer to the query

requested by its users.

Since this solution is already created, the best

approach is to create a new project in Business

Intelligence Development Studio (BIDS) if you are

using SQL Server 2008/ 2008 R2, or SQL Server

Data Tools (SSDT) if you are using SQL Server

2012 or greater.

BIDS or SSDT is a tool provided by Microsoft

to develop and deploy your BI solutions to the

desired environment. This developer tool is

essential to analyze the actual cube design by

reviewing different objects such as the data source

object, data source view, cube measurements and

cube dimensions.

The Data Source Object is created to provide

information such as Data Source type, IP address,

credentials, etc. It all depends on the data source(s)

type being used for the BI solution and security

access required to connect to the source and retrieve

data.

Since we can have multiple data sources and

not every table in a database is needed, Microsoft

designed an object that would allow us to define a

“new relational database” containing only those

tables that we need for our BI solution. This object

is known by Microsoft as the Data Source View

and in many books is called “the star schema” or

“snowflake diagram”. Inside this object we can

create new tables through queries, known as named

query, and add new attributes to a table known as

calculated names.

The named queries allow us to create a

temporary table that will be used to define

measurements and/or dimensions. The named

calculations are functions that we can create to add

attributes that do not exist in a specific table. For

example, the full name of a person by

concatenating the first and last name.

In a BI solution optimization, in which the

major concern is at the processing area, I would

strongly suggest to avoid using named queries,

named calculations and view tables. Especially if

the tables included in the joints contains a huge

amount of data. This tables with huge amount of

data will cost a long time to process because the

named query has to review each row to perform a

specific task such as read, write, or calculate. In this

particular area, I have decided to review each

named query of the data source view to observe the

rows and execution time returned after executing

them directly in SSMS. These values will allow us

to observe the impact each query could have in the

database engine. Table 1 shows the results of the

review made to the named queries and tables views

found to be used in the data source view definition.

Table 1

Named Query and View Tables Execution Results

Named Query or View Table Rows

Amount

Execution

Time

Named Query 1 81 00:00:02

Named Query 2 1,408,289 00:00:54

View Table 1 692,785 00:00:13

View Table 2 19,103 01:15:19

Named Query 3 N/A 1:51:52

In the table presented above I have changed the

name of the actual named queries and view tables

for security reasons. However, the results can show

the great difference that a complex query could

cause during the reading execution.

The major difference between Named Query 3

and the other tables and views is that this query is

using more than eight joints to obtain all the desired

information. Also, View Table 2 and Named Query

3 are using the biggest table in the data source (over

1,000 GB size) as part of their query.

Have in mind that the test is being performed

in an environment that lacks the hardware needed

to simulate production environment in terms of

speed and disk space. Limitations in disk space

were the main reason for Named Query 3 not being

able to complete execution as requested.

 The Cube Measurement object is defined by

the table(s) that have the facts about the “sales” or

element you are studying. This object looks for

those attributes defined by the developer and

performs the necessary aggregations for the cube

definition.

The Cube Dimension object is defined by what

exactly the customer would like to know about the

measurement (e.g., Sales). For example, if the

customer would like to know how many mountain

bicycles were sold by the company in a monthly

basis, the sale amount would represent the

measurement aggregation while the time element

(e.g., monthly) represents the dimension.

In this particular case, the developer has to

define the table that is considered as the dimension

and specify the attributes that are required by the

customer to be present. In this object we can also

define the hierarchy in which you would like the

information to be presented. In reality the hierarchy

that is defined in the dimensions will allow the

customer quickly change between dimensions (e.g.,

Weekly, Monthly, Quarterly and Annually).

Up until now all I have done is analyze the

definition of the cube and highlight those areas of

concerns that could potentially lead to the solution

of the problem.

At this point you may wonder about the actual

performance issue and how am I going to study the

issue. Where the answer would be Microsoft SQL

Profiler.

MICROSOFT SQL PROFILER

Microsoft SQL Profiler is a tool provided with

SQL Server and it is used to connect to the SQL

Server Database Engine or SQL Server Analysis

Services and capture the metadata corresponding to

the opened session. Information such as

EventClass, TextData, Connection ID, NT

UserName, Duration, among others as presented in

Figure 3.

As a unit testing scenario, I have imported the

cube definition into BIDS and deployed the same to

my local machine. Since the cube was going to be

deployed for the first time the processing of the

information has to be a full processing type, this

means that we are forced to execute a processing of

the entire data source instead of processing the

missing portion from the last time it was performed.

To observe the actual deployment effects on the

analysis services, I created a new event trace with

SQL profiler to track the events that internally

occurs when the cube is deployed.

In this test, the cube was not able to deploy due

to disk space limitations. However, the SQL

Profiler presented the following areas of concerns:

 More than one measurement processing failed

due to missing key attribute while reading

result of the executed SQL performed by the

measurement partition.

 Many simultaneous processing were observed

in the profiler results.

 Many events had a start time but they had no

end time.

 Many of the data was being inserted as

unknown due to empty or NULL values.

To minimize these concerns I used and

redefined a SQL Server Integration Services

package.

Figure 3

Microsoft SQL Profiler Trace Sample

MICROSOFT SQL SERVER –

INTEGRATION SERVICES (SSIS)

SSIS is a service that allows SQL users,

administrators and developers to design workflows

that will allow them to complete a specific job.

BIDS or SSDT is the tool used to define these

packages and its jobs can vary from data extraction,

transformations and data loading among others.

In this case we will be using control flow task

known as “Analysis Services Processing Task” to

process first the dimension objects and later the

measurements objects.

This process could take quite some time

depending on the objects definitions. In this case

we have one specific named query, Named Query 3

from table 1, which represents the major concern.

Execution of this package confirmed the

concerns with the definitions of some of the data

source view. Among those, the table containing the

biggest amount of data and named calculations, this

table is being used as a measurement. It consumed

the whole temporary disk space available and took

over 6.5 hours to execute prior disk space error

notification.

Table 2

SSIS Analysis Services Processing Task Execution Time

Object

Updated

Object

Type

Process Type Duration

Table 1 Dimension Process Full 0:00:23

Table 2 Dimension Process Full 0:00:05

Table 3 Dimension Process Full 0:00:04

Table 4 Dimension Process Full 0:00:04

NamedQuery2 Dimension Process Full 0:03:53

Table 5 Dimension Process Full 0:00:07

Table 6 Dimension Process Full 0:00:06

Table 7 Dimension Process Full 0:00:07

Table 8 Dimension Process Full 0:01:38

NamedQuery3 Dimension Process Full 0:40:35

Table 9 Fact Process Full 0:00:48

Table 10 Fact Process Full 0:00:06

Table 11 Fact Process Full *6:30:00

*Last object updated did not complete the task due to disk space

limitation

SUMMARY OF CONCERNS

After performing the various tests I can

confirm that the area of concern is in the processing

data stage. The root cause in this case is the design

definition of the data source view and the missing

concept of data warehousing. Another area of

concern is the hardware, a big solution like this will

need more memory and disk space as time goes by

and more transactions are added in a daily basis.

For this particular solution, the amount of

transaction that is added in a single day is around

2,000,000 records or rows.

POSSIBLE SOLUTIONS

The best solution to fix the current

optimization concern is the design and creation of a

data warehouse with extract-transform-load

package that will transfer data from the OLTP

database to the data warehouse. Using this data

warehouse will optimize the execution time to

process the data for each dimension and

measurement. It will also simplify the monitoring

and execution of each update as defined by the

business whether it is daily, weekly, or monthly.

However, data warehousing could represent an

issue for the company in terms of budget and time.

This solution will require an investment for new

equipment, resources and time. BI developers will

need to be able to emulate an exact copy of the

current environment in order to complete the design

and test the new environment prior to deploy as the

new business solution for the customer.

The second option is a solution that will allow

the business to keep current BI solution design.

But, close monitoring will be needed to ensure the

job is executed in a daily basis. One day that it is

not executed, it will need to process the entire data

from the beginning resulting in a long execution

time. This approach will only need the generation

of a SSIS package and query definition to obtain all

data corresponding to the previous date.

I suggest implementing the second solution as

a temporary solution, but consider the first option

as the goal to provide continues BI solution with a

lot less impact to the processing data stage.

TEST LAB ENVIRONMENT

To optimize performance of a Business

Intelligence solution, Microsoft recommends to

divide your solution in three different servers with

different disk/spindles for SQL Server and a

different machine for developing tools such as

BIDS or SSDT. Figure 4 presents the ideal

infrastructure in which each main service of the

SQL Server is installed in a different server with its

own disk and the developer tool is installed in a

laptop or PC.

Even though this is the best approach to

organize your SQL Server infrastructure we are

limited to another environment set. However, to be

able to quantify the performance improvement

offered by the new solution I have tested both

solutions in the same environment. The test

environment is presented in figure 5.

SQL Server
Analysis Services

SQL Server
Reporting Services

SQL Server
Database Engine

BIDS or SSDT

Figure 4

Microsoft SQL Server Recommended Infrastructure

Configuration

SQL Server
Database Engine

and
Analysis Services

SQL Server
Reporting Services

BIDS or SSDT

Figure 5

BI Solution Test Infrastructure

TEST RESULTS

Due to hardware limitations we will not be able

to construct a test environment to design and test

the implementation of a new data warehouse with

its respective extract-transform-load workflow

definition. But we will be able to design and test the

temporary solution that is expected to solve the

processing data performance issue.

Table 3

SSIS Analysis Services Processing Task Execution Time for

New Solution

Task Start End Duration

SSAS

Processing

Dimensions

11:29:19am 11:33:52am 0:04:32

SSAS

Processing

Measurements

11:33:52am 12:37:19pm 1:03:26

Table 4

SSIS Analysis Services Processing Task Execution Time

Differences

BI Solution Processing Duration

Old BI Solution Full *12:00:00

New BI Solution
Incremental with

View Tables
1:07:58

*Since we were not able to complete task for full process in the

test environment we took the execution time for the full

processing from the production environment logs.

 As we observe from the table 4, the greatest

benefit of this solution is that it significantly

improves the overall processing time. The new

solution only takes 9% of the time it takes in the

production environment.

The only problem is that the solution requires

close monitoring of the processing. If the solution

does not process the new data or any data in the

data source have to be changed. The solution will

need to process the data completely in order to

present the correct results in different reports or

pivot tables generated with Excel.

CONCLUSION

Sometimes there are business constraints that

will limit the design of a business solution. In this

particular case I was able to observe that the BI

solution currently presented in the production

environment doesn’t follow the best practices in

regards to the design of a data warehouse.

However, we can still fix the current solution

by designing a data warehouse and implementing

indexes that will allow us to optimize the whole

application. The only problem would be the cost

involved in the solution. The current cost could be

greater than the cost it would have be if it was

designed to scale from the inception of the solution

as it will now require twice the hardware to avoid

downtime.

The cost estimated to provide the new fixes to

the BI solution would be another area of

investigation, but I believe that we can minimize

the expenses by using services such as Windows

Azure, This services allow us to design and test the

solution prior to deploy the same in our own private

cloud.

REFERENCES

[1] SQL Server - Lesson 13: Relationships and Data Integrity,

2007 - 2012. Retrieved November 1, 2013, from functionx:

http://www.functionx.com/sqlserver2005/Lesson13.htm

[2] Ali, A. (2012, 2 17). SSAS - Best Practices and

Performance Optimization - Part 1 of 4. Retrieved on

November 1, 2013, from mssqltips:

http://www.mssqltips.com/sqlservertip/2565/ssas--best-

practices-and-performance-optimization--part-1-of-4/.

[3] Atkinson, P., & Vieira, R., Beginning Microsoft SQL

Server 2012 Programming, Indianapolis: John Wiley &

Sons, Inc., 2012.

[4] Define Named Calculations in Data Source View (Analysis

Services), (n.d.). Retrieved on November 1, 2013, from

TechNet: http://msdn.microsoft.com/en-us/library/ms

174859.aspx.

[5] Design Database Diagrams, (n.d.). Retrieved on

November 1, 2013, from TechNet:

http://msdn.microsoft.com/en-us/library/ms171971.aspx.

[6] Harinath, S., Pihlgren, R., Guang-Yeu Lee, D., Sirmon, J.,

& Bruckner, R. M., Microsoft SQL Server 2012 Analysis

Services with MDX and DAX, Indianapolis: John Wiley &

Sons, Inc., 2012.

[7] Jorgensen, A., Wort, S., LoForte, R., & Knight, B.,

Microsoft SQL Server 2012 Administration, Indianapolis:

John Wiley & Sons, Inc., 2012.

[8] Larsen, G. A. (2004, 11 30). SQL Server Undocumented

Stored Procedures sp_MSforeachtable and

sp_MSforeachdb, Retrieved on November 1, 2013, from

Database Journal: http://www.databasejournal.com/

features/mssql/article.php/3441031/SQL-Server-Undocu

mented-Stored-Procedures-spMSforeachtable-and-spMS

foreachdb.htm.

[9] Query Fundamentals, (n.d.). Retrieved February 4, 2014,

from TechNet: http://technet.microsoft.com/en-

us/library/ms190659%28v=sql.105%29.aspx.

[10] sp_spaceused (Transact-SQL), (n.d.). Retrieved November

1, 2013, from TechNet: http://technet.microsoft.com/en-

us/library/ms188776.aspx.

[11] Using Data Sources and Data Source Views, (n.d.).

Retrieved November 1, 2013, from TechNet:

http://technet.microsoft.com/en-us/library/cc505861.aspx.

